洛谷 P1372 又是毕业季I Label:None
题目背景
“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!
题目描述
为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排。可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~)。这可难为了他,请你帮帮忙吧!
PS:一个数的最大公约数即本身。
输入输出格式
输入格式:
两个空格分开的正整数n和k。(n>=k>=1)
输出格式:
一个整数,为最大的默契值。
输入输出样例
输入样例#1:
4 2
输出样例#1:
2
说明
【题目来源】
lzn原创
【数据范围】
对于20%的数据,k<=2,n<=1000
对于另30%的数据,k<=10,n<=100
对于100%的数据,k<=1e9,n<=1e9(神犇学校,人数众多)
1 #include<cstdio> 2 int main(){int n,k;scanf("%d%d",&n,&k);printf("%d\n",n/k);return 0;}(这长度......)
转载题解:
可以直接假设选出了最大公因数p
然后选的人可以表示为1*p,2*p···k*p(当然这样表示是最小的)
然后必然满足k*p<=n
所以p<=n/k
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 3.0 许可协议。转载请注明出处!