洛谷 P1147 连续自然数和 Label:等差数列

题目描述

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。

例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为M=10000的一个解。

输入输出格式

输入格式:

 

包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。

 

输出格式:

 

每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。

 

输入输出样例

输入样例#1:
combo.in
10000
输出样例#1:
combo.out
18 142 
297 328 
388 412 
1998 2002

代码

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<cmath>
 5 using namespace std;
 6 int m,x,y;
 7 bool can(double x)//判断是否为整数,就不讲了,应该能看懂  
 8 {
 9     if((int)x==x) return true;
10     else return false;
11 } 
12 int main()
13 {
14     scanf("%d",&m);
15     double h;
16     for(int i=1;i<=m/2;i++)  //枚举x  
17     {
18         h=sqrt(2*m+(i-0.5)*(i-0.5))-0.5;     //这就是推出的公式 
19         if(can(h)) printf("%d %d\n",i,(int)h);
20     }
21     return 0;
22 }
抄来的直接看题解就好

连题解也是转载的QAQ

给出M,有等差数列求和公式得:设区间[x,y]上M=(x+y)*(x-y+1)/2 顺便提一下 x-y+1 为自然数个数

化简得到 y方-y=x方+x-2*M;进一步两边同时加一个1/4 可得 (y-1/2)方=(x+1/2)方-2*M;

于是两边开方 有y=根号下((x+1/2)方-2*M)+1/2;

那么我们就枚举x i=1;i<=M/2;i++ 因为至少是两个数相加所以枚举到一半即可;

可以算出每一个x对应的y 只需判断其是否为整数 如果是那么合题输出一组;

 

posted @ 2016-08-29 18:52  Radiumlrb  阅读(192)  评论(0编辑  收藏  举报