八目鳗

问题描述

米斯蒂娅去捕捉八目鳗为开店作准备。现在,她在一个有八目鳗的池塘边。她知道池塘里的有n条八目鳗,把第i条八目鳗从池塘弄回小店需要ti∗2个单位的时间(毕竟需要往返)。
这些八目鳗会自己吃P点!随着时间的推移,米斯琪把它们弄回来所消耗的体力与时间成正比,即在第t个时刻开始运第i条八目鳗所消耗的体力为t∗ci,其中,ci是给定的常数。一开始所有的八目鳗都没有P点,也就是说运送第一条八目鳗所消耗的体力为0。
米斯琪想知道把所有八目鳗运回小店所消耗的体力最少是多少。

输入格式

第一行输入一个整数n,表示八目鳗的数量。
接下来n行,每行包含两个整数ti,ci

输出格式

一个整数,表示最少消耗的体力。

样例输入

6

3 1

2 5

2 3

3 2

4 1

1 6

样例输出

86

数据范围

对于10%的数据,n≤10,t≤100,ci≤10;
对于60%的数据,n≤1000,t≤20000,ci≤100;
对于100%的数据,n≤100000,t≤2000000,ci≤100。

题解

假设我们已经找出消耗体力最少的方案,并将八目鳗按搬运顺序重新编号,即现在编号为i的八目鳗是第i个搬运的

设当前时刻为t,接下来要运第i-1只八目鳗和第i只八目鳗,而先运第i-1只八目鳗的条件为:t*ci-1+(t+2*ti-1)*ci≤t*ci+(t+2*ti)*ci-1

 


证明:

若先运第i-1只八目鳗,需消耗体力t*ci-1,耗费了2*ti-1的时间,在t+2*ti-1时刻开始运第i只八目鳗,需消耗体力(t+2*ti-1)*ci

同理可得先运第i只八目鳗消耗的总体力为t*ci+(t+2*ti)*ci-1

而我们已经找出消耗体力最少的方案,即我们已经知道第i-1只八目鳗在第i只八目鳗之前运,那么就需要满足先运第i-1只八目鳗消耗的总体力比先运第i只八目鳗消耗的总体力少,即t*ci-1+(t+2*ti-1)*ci≤t*ci+(t+2*ti)*ci-1


 

整理得:ti-1*ci≤ti*ci-1

读入所有数据后按这个条件排序,再依题意按顺序计算消耗的体力即可

 

 

 

 1 #include <algorithm>
 2 #include <cstdio>
 3 #define ll long long
 4 int n;
 5 ll ans;
 6 struct node{
 7     ll t,c;
 8 }a[100005];
 9 bool cmp(node x,node y)
10 {
11     return (x.t*y.c)<=(y.t*x.c);
12 }
13 int main()
14 {
15     int i,j;
16     ll s=0;
17     scanf("%d",&n);
18     for (i=1;i<=n;i++)
19       scanf("%lld%lld",&a[i].t,&a[i].c),
20       a[i].t*=2;
21     std::sort(a+1,a+n+1,cmp);
22     for (i=1;i<=n;i++)
23     {
24         ans+=(s*a[i].c);
25         s+=a[i].t;
26     }
27     printf("%lld",ans);
28     return 0;
29 }

 

posted @ 2021-05-28 22:59  SAKURA12  阅读(319)  评论(0编辑  收藏  举报