mysql学习 索引(1)

什么是索引

在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。

 

索引的常见模型

  • 哈希表
  • 有序数组
  • 搜索树

哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。

哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

解决哈希冲突的一种方法是链地址法

 

 

 

哈希表模型的优点是,增加新的数据的时候比较简单,只需要直接往里面添加即可。

缺点是哈希索引做区间查询很慢,需要全部扫描。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

 

有序数组

有序数组在等值查询和范围查询场景中的性能就都非常优秀。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

 

搜索树

二叉树是一种经典的数据结构。

二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。检索的时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

 

数据库技术发展到今天,跳表、LSM 树等数据结构也被用于引擎设计中。

 

 

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

这个表的建表语句是:

1 mysql> create table T(
2 id int primary key, 
3 k int not null, 
4 name varchar(16),
5 index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。

 

 

 

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

  • 主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。
  • 非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

 

 

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。

以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

 

案例

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

 

除了考虑性能外,我们还可以从存储空间的角度来看。

假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。显

然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

 

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。有没有什么场景适合用业务字段直接做主键的呢?还是有的。

比如,有些业务的场景需求是这样的:只

  • 有一个索引;
  • 该索引必须是唯一索引。

你一定看出来了,这就是典型的 KV 场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

 

 

总结

  1.索引的作用:提高数据查询效率
  2.常见索引模型:哈希表、有序数组、搜索树
  3.哈希表:键 - 值(key - value)。
  4.哈希思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
  5.哈希冲突的处理办法:链表
  6.哈希表适用场景:只有等值查询的场景
  7.有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
  8.有序数组查询效率高,更新效率低
  9.有序数组的适用场景:静态存储引擎。
  10.二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子
  11.二叉搜索树:查询时间复杂度O(log(N)),更新时间复杂度O(log(N))
  12.数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
  13.InnoDB中的索引模型:B+Tree
  14.索引类型:主键索引、非主键索引
    主键索引的叶子节点存的是整行的数据(聚簇索引),非主键索引的叶子节点内容是主键的值(二级索引)
  15.主键索引和普通索引的区别:主键索引只要搜索ID这个B+Tree即可拿到数据。普通索引先搜索索引拿到主键值,再到主键索引树搜索一次(回表)
  16.一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。
  17.从性能和存储空间方面考量,自增主键往往是更合理的选择。

 

 

问答

1、对于上面例子中的 InnoDB 表 T,如果你要重建索引 k,你的两个 SQL 语句可以这么写:

1 alter table T drop index k;
2 alter table T add index(k);

如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

我的问题是,对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?

答:

1) 直接删掉主键索引是不好的,它会使得所有的二级索引都失效,并且会用ROWID来作主键索引;新建主键索引,会同时去修改普通索引对应的主键索引,性能消耗比较大。

2)删除重建普通索引貌似影响不大,不过要注意在业务低谷期操作,避免影响业务。

看到mysql官方文档写了三种措施,第一个是整个数据库迁移,先dump出来再重建表(这个一般只适合离线的业务来做);

第二个是用空的alter操作,比如ALTER TABLE t1 ENGINE = InnoDB;这样子就会原地重建表结构(真的吗?);

第三个是用repaire table,不过这个是由存储引擎决定支不支持的(innodb就不行)

总之:重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替 : alter table T engine=InnoDB。

 

2、“N叉树”的N值在MySQL中是可以被人工调整的么?

答、

1)通过改变key值来调整
N叉树中非叶子节点存放的是索引信息,索引包含Key和Point指针。Point指针固定为6个字节,假如Key为10个字节,那么单个索引就是16个字节。如果B+树中页大小为16K,那么一个页就可以存储1024个索引,此时N就等于1024。我们通过改变Key的大小,就可以改变N的值
2)改变页的大小
页越大,一页存放的索引就越多,N就越大。

 

3、如果一张表没有主键,也没有其他索引,数据怎么存储的?

答:

1)在表中定义主键时,InnoDB将其作为聚集索引
2)如果没有主键,则使用第一个 UNIQUE 索引,并定义为 NOT NULL 聚集索引
3)如果没有 主键 和 UNIQUE 索引,则生成 6 字节自增 row ID 为主键索引

 

4、为什么使用B+树不用B树?

答:

1)先从数据结构的角度来看

  我们知道B-树和B+树最重要的一个区别就是B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域。

  这就决定了B+树更适合用来存储外部数据,也就是所谓的磁盘数据。


2)从Mysql(Inoodb)的角度来看

  B+树是用来充当索引的,一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上。

  那么Mysql如何衡量查询效率呢?磁盘IO次数,B-树(B类树)的特定就是每层节点数目非常多,层数很少,目的就是为了就少磁盘IO次数,当查询数据的时候,最好的情况就是很快找到目标索引,然后读取数据,使用B+树就能很好的完成这个目的,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时啊!),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。这是优点之一。

  另一个优点是什么,B+树所有的Data域在叶子节点,一般来说都会进行一个优化,就是将所有的叶子节点用指针串起来。这样遍历叶子节点就能获得全部数据,这样就能进行区间访问啦。

  (数据库索引采用B+树的主要原因是 B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低))

  至于MongoDB为什么使用B-树而不是B+树,可以从它的设计角度来考虑,它并不是传统的关系性数据库,而是以Json格式作为存储的nosql,目的就是高性能,高可用,易扩展。首先它摆脱了关系模型,上面所述的优点2需求就没那么强烈了,其次Mysql由于使用B+树,数据都在叶节点上,每次查询都需要访问到叶节点,而MongoDB使用B-树,所有节点都有Data域,只要找到指定索引就可以进行访问,无疑单次查询平均快于Mysql(但侧面来看Mysql至少平均查询耗时差不多)。

  总体来说,Mysql选用B+树和MongoDB选用B-树还是以自己的需求来选择的。

posted @ 2022-02-16 11:06  r1-12king  阅读(115)  评论(0编辑  收藏  举报