python heapq
转载自Python标准库模块之heapq
最大堆
最大堆确保父堆大于或等于它的两个子堆。
最小堆
最小堆要求父堆小于或等于其子堆。Python的heapq模块实现了一个最小堆。
内置函数
- heapq.heappush(heap, item)
将 item 的值加入 heap 中,保持堆的不变性。
- heapq.heappop(heap)
弹出并返回 heap 的最小的元素,保持堆的不变性。如果堆为空,抛出 IndexError 。使用 heap[0] ,可以只访问最小的元素而不弹出它。
- heapq.heappushpop(heap, item)
将 item 放入堆中,然后弹出并返回 heap 的最小元素。该组合操作比先调用 heappush() 再调用 heappop() 运行起来更有效率。
- heapq.heapify(x)
将list x 转换成堆,原地,线性时间内。
- heapq.heapreplace(heap, item)
弹出并返回 heap 中最小的一项,同时推入新的 item。 堆的大小不变。 如果堆为空则引发 IndexError。
这个单步骤操作比 heappop() 加 heappush() 更高效,并且在使用固定大小的堆时更为适宜。 pop/push 组合总是会从堆中返回一个元素并将其替换为 item。
返回的值可能会比添加的 item 更大。 如果不希望如此,可考虑改用 heappushpop()。 它的 push/pop 组合会返回两个值中较小的一个,将较大的值留在堆中。
该模块还提供了三个基于堆的通用功能函数。
- heapq.merge(*iterables, key=None, reverse=False)
将多个已排序的输入合并为一个已排序的输出(例如,合并来自多个日志文件的带时间戳的条目)。 返回已排序值的 iterator。
类似于 sorted(itertools.chain(iterables)) 但返回一个可迭代对象,不会一次性地将数据全部放入内存,并假定每个输入流都是已排序的(从小到大)。
具有两个可选参数,它们都必须指定为关键字参数。
key 指定带有单个参数的 key function,用于从每个输入元素中提取比较键。 默认值为 None (直接比较元素)。
reverse 为一个布尔值。 如果设为 True,则输入元素将按比较结果逆序进行合并。 要达成与 sorted(itertools.chain(iterables), reverse=True) 类似的行为,所有可迭代对象必须是已从大到小排序的。
- heapq.nlargest(n, iterable, key=None)
从 iterable 所定义的数据集中返回前 n 个最大元素组成的列表。 如果提供了 key 则其应指定一个单参数的函数,用于从 iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于: sorted(iterable, key=key, reverse=True)[:n]。
- heapq.nsmallest(n, iterable, key=None)
从 iterable 所定义的数据集中返回前 n 个最小元素组成的列表。 如果提供了 key 则其应指定一个单参数的函数,用于从 iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于: sorted(iterable, key=key)[:n]。
后两个函数在 n 值较小时性能最好。 对于更大的值,使用 sorted() 函数会更有效率。 此外,当 n==1 时,使用内置的 min() 和 max() 函数会更有效率。 如果需要重复使用这些函数,请考虑将可迭代对象转为真正的堆。
创建堆
heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构
python代码
import heapq
# 第一种
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(nums) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
heapq 模块还有一个heapq.merge(iterables) 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(iterables)),但返回的是可迭代的。
python代码
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)
res = heapq.merge(num1, num2)
print(list(res))
访问堆内容
堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。
python代码
import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]
如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce() 函数
python代码
import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]
获取堆最大或最小的范围值
如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest() 或heapq.nsmallest() 函数
python代码
import heapq
nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))
"""
输出:
[5, 4, 3]
[1, 2, 3]
"""
这两个函数还接受一个key参数,用于dict或其他数据结构类型使用
python代码
import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)
"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""
heapq应用
实现heap堆排序算法
python代码
>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
该算法和sorted(iterable) 类似,但是它是不稳定的。
堆的值可以是元组类型,可以实现对带权值的元素进行排序。
python代码
>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')