3:django models Making queries 高级进阶--聚合运算
在前一遍文章django models Making queries里面我们提到了django常用的一些检索数据库的内容,
下面我们来看一下更为高级的检索聚合运算
这是我们要用到的模型
class Author(models.Model): name = models.CharField(max_length=100) age = models.IntegerField() friends = models.ManyToManyField('self', blank=True) class Publisher(models.Model): name = models.CharField(max_length=300) num_awards = models.IntegerField() class Book(models.Model): isbn = models.CharField(max_length=9) name = models.CharField(max_length=300) pages = models.IntegerField() price = models.DecimalField(max_digits=10, decimal_places=2) rating = models.FloatField() authors = models.ManyToManyField(Author) publisher = models.ForeignKey(Publisher) pubdate = models.DateField() class Store(models.Model): name = models.CharField(max_length=300) books = models.ManyToManyField(Book)
我们直接来看一些高级聚合运算的例子吧
# Total number of books. >>> Book.objects.count() 2452 # Total number of books with publisher=BaloneyPress >>> Book.objects.filter(publisher__name='BaloneyPress').count() 73 # Average price across all books. >>> from django.db.models import Avg >>> Book.objects.all().aggregate(Avg('price')) {'price__avg': 34.35} # Max price across all books. >>> from django.db.models import Max >>> Book.objects.all().aggregate(Max('price')) {'price__max': Decimal('81.20')} # Each publisher, each with a count of books as a "num_books" attribute. >>> from django.db.models import Count >>> pubs = Publisher.objects.annotate(num_books=Count('book')) >>> pubs [<Publisher BaloneyPress>, <Publisher SalamiPress>, ...] >>> pubs[0].num_books 73 # The top 5 publishers, in order by number of books. >>> from django.db.models import Count >>> pubs = Publisher.objects.annotate(num_books=Count('book')).order_by('-num_books')[:5] >>> pubs[0].num_books 1323
aggregate(英文原意:a sum total of many heterogenous things taken together,中文释义:合计;集合体;总计)
annotate(英文原意:add explanatory notes to or supply with critical comments,中文释义:注释;给…作注释或评注)
结合上面给出的例子,我们似乎可以这样总结吧
aggregate是对我们我们感兴趣的某一列进行一些操作,返回的是一个字典
annotate是返回的是一个queryset,并且这个queryset有着我们需要的额外字段
继续看一些annotate的例子吧
# Build an annotated queryset >>> q = Book.objects.annotate(Count('authors')) # Interrogate the first object in the queryset >>> q[0] <Book: The Definitive Guide to Django> >>> q[0].authors__count 2 # Interrogate the second object in the queryset >>> q[1] <Book: Practical Django Projects> >>> q[1].authors__count 1
接下来我们来进行更高级的操作吧
1:找出每间store的价格范围,很明显,如果你想要范围的结果包含store,你应该用annotate
>>> Store.objects.annotate(min_price=Min('books__price'), max_price=Max('books__price'))
如果你只是想得出所有store的价格范围,你应该用aggregate
Store.objects.aggregate(min_price=Min('books__price'), max_price=Max('books__price'))
分组查询values()
使用values()可以在查询前后给数据分组
最后我们说几个关于查询顺序的例子
1:annotate和values的顺序
>>> Author.objects.values('name').annotate(average_rating=Avg('book__rating')) >>> Author.objects.annotate(average_rating=Avg('book__rating')).values('name', 'average_rating')
第一行的查询时先对作者分组(相同名字的作者的书会被归在一组),返回每个作者的平均排名
第二行的查询会为每个作者生成一个average_rating,而且只会输出每个author的name和average_rating
2:filter和annotate的顺序
>>> Publisher.objects.annotate(num_books=Count('book')).filter(book__rating__gt=3.0) >>> Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count('book'))
两个查询都返回了至少出版了一本好书(评分大于3分)的出版商的列表。
但是第一个查询的注解包含其该出版商发行的所有图书的总数;
而第二个查询的注解只包含出版过好书的出版商的所发行的好书(评分大于3分)总数。
在第一个查询中,注解在过滤器之前,所以过滤器对注解没有影响。在第二个查询中,过滤器在注解之前,所以,在计算注解值时,过滤器就限制了参与运算的对象的范围