Longest Palindromic Substring
原理参考:http://www.douban.com/note/321468038/
public class Solution { public String longestPalindrome(String s) { if((s == null) || (s.length() == 0)) { return ""; } int len = s.length() * 2 + 1; char[] str = new char[len]; for(int i = 0; i < len; i++) { if(i % 2 == 0) { str[i] = '#'; }else { str[i] = s.charAt(i / 2); } } int maxIndex = -1; int maxValue = -1; int[] mark = new int[len]; for(int i = 0; i < len; i++) { if(i >= maxValue) { int length = 0; while((i - length - 1>= 0) && (i + length + 1< len) && (str[i - length - 1] == str[i + length + 1])) { length++; } mark[i] = length; if(i + length > maxValue) { maxValue = i + length; maxIndex = i; } }else { int mirror = 2 * maxIndex - i; int length = Math.min(mark[mirror], maxValue - i); while((i - length - 1>= 0) && (i + length + 1< len) && (str[i - length - 1] == str[i + length + 1])) { length++; } mark[i] = length; if(i + length > maxValue) { maxValue = i + length; maxIndex = i; } } } int res = 0, index = 0; for(int i = 0; i < len; i++) { int value = mark[i]; if(res < value) { res = value; index = i; } } if(str[index] == '#') { return s.substring(index / 2 - res / 2, index / 2 + res / 2); }else { return s.substring(index / 2 - res / 2, index / 2 + res / 2 + 1); } } }