受限玻尔兹曼机RBM

相关算法

python代码参考http://blog.csdn.net/zc02051126/article/details/9668439#(作少量修改与注释)

 

  1 #coding:utf8
  2 import matplotlib.pylab as plt
  3 import numpy as np
  4 import cPickle
  5 
  6 
  7 class RBM:
  8     def __init__(self,n_visul, n_hidden, max_epoch = 50, batch_size = 110, penalty = 2e-4):
  9         self.n_visible = n_visul
 10         self.n_hidden = n_hidden
 11         self.max_epoch = max_epoch
 12         self.batch_size = batch_size
 13         self.penalty = penalty
 14         self.w = np.random.random((self.n_visible, self.n_hidden)) * 0.1
 15         self.v_bias = np.zeros((1, self.n_visible))
 16         self.h_bias = np.zeros((1, self.n_hidden))
 17 
 18     def sigmoid(self, z):
 19         return 1.0 / (1.0 + np.exp( -z ))
 20 
 21     def forward(self, vis):
 22         return self.sigmoid(np.dot(vis.T, self.w) + self.h_bias)
 23 
 24     def backward(self, vis):
 25         return self.sigmoid(np.dot(vis, self.w.T) + self.v_bias)
 26 
 27     def batch(self):
 28         d, N = self.x.shape
 29         num_batchs = int(round(N / self.batch_size)) + 1
 30         groups = np.ravel(np.repeat([range(0, num_batchs)], self.batch_size, axis = 0))
 31         groups=groups[:N]
 32         np.random.shuffle(groups)
 33         batch_data = []
 34         for i in range(0, num_batchs):
 35             index = groups == i
 36             batch_data.append(self.x[:, index])
 37         return batch_data
 38 
 39     def rbmBB(self, x):
 40         self.x = x
 41         eta = 0.1
 42         momentum = 0.5  #动量项
 43         W = self.w
 44         b = self.h_bias
 45         c = self.v_bias
 46         Winc  = np.zeros((self.n_visible, self.n_hidden))
 47         binc = np.zeros(self.n_hidden)
 48         cinc = np.zeros(self.n_visible)
 49         batch_data = self.batch()
 50         num_batch = len(batch_data)
 51         errors = []
 52         for epoch in range(0, self.max_epoch):
 53             err_sum = 0.0
 54             for batch in range(0, num_batch):
 55                 num_dims, num_cases = batch_data[batch].shape
 56                 data = batch_data[batch]
 57                 # 已知可见层,采样出隐藏层
 58                 ph = self.forward(data)
 59                 ph_states = np.zeros((num_cases, self.n_hidden))
 60                 ph_states[ph > np.random.random((num_cases, self.n_hidden))] = 1
 61                 # 已知隐藏层,采样出可见层
 62                 neg_data = self.backward(ph_states)
 63                 neg_data_states = np.zeros((num_cases, num_dims))
 64                 neg_data_states[neg_data > np.random.random((num_cases, num_dims))] = 1
 65                 neg_data_states = neg_data_states.transpose()
 66                 nh = self.forward(neg_data_states)
 67                 # CD算法
 68                 dW = np.dot(data, ph) - np.dot(neg_data_states, nh)
 69                 dc = np.sum(data, axis = 1) - np.sum(neg_data_states, axis = 1)
 70                 db = np.sum(ph, axis = 0) - np.sum(nh, axis = 0)
 71                 # 刷新参数
 72                 Winc = momentum * Winc + eta * (dW / num_cases - self.penalty * W)
 73                 binc = momentum * binc + eta * (db / num_cases);
 74                 cinc = momentum * cinc + eta * (dc / num_cases);
 75                 W = W + Winc
 76                 b = b + binc
 77                 c = c + cinc
 78                 self.w = W
 79                 self.h_bais = b
 80                 self.v_bias = c
 81                 err = np.linalg.norm(data - neg_data.transpose())
 82                 err_sum += err
 83             print epoch, err_sum
 84             errors.append(err_sum)
 85         self.errors = errors
 86         self.hiden_value = self.forward(self.x)
 87         h_row, h_col = self.hiden_value.shape
 88         hiden_states = np.zeros((h_row, h_col))
 89         hiden_states[self.hiden_value > np.random.random((h_row, h_col))] = 1
 90         self.rebuild_value = self.backward(hiden_states)
 91 
 92     def visualize(self, X):  #可视化
 93         D, N = X.shape
 94         s = int(np.sqrt(D))
 95         num = int(np.ceil(np.sqrt(N)))
 96         a = np.zeros((num*s + num + 1, num * s + num + 1)) - 1.0
 97         x = 0
 98         y = 0
 99         for i in range(0, N):
100             z = X[:,i]
101             z = z.reshape(s,s,order='F')
102             z = z.transpose()
103             a[x*s+x:x*s+s+x , y*s+y:y*s+s+y] = z
104             x = x + 1
105             if(x >= num):
106                 x = 0
107                 y = y + 1
108         return a
109 
110 def readData(path):
111     data = []
112     for line in open(path, 'r'):
113         ele = line.split(' ')
114         tmp = []
115         for e in ele:
116             if e != '':
117                 tmp.append(float(e.strip(' ')))
118         data.append(tmp)
119     return data
120 
121 if __name__ == '__main__':
122     f = open('mnist.pkl', 'rb')
123     training_data, validation_data, test_data = cPickle.load(f)
124     training_inputs = [np.reshape(x, 784) for x in training_data[0]]
125     data =training_inputs[:5000]
126     data = np.array(data)
127     data = data.transpose()
128     rbm = Rbm(784, 100,max_epoch = 50)
129     rbm.rbmBB(data)
130 
131     a = rbm.visualize(data)  #(2060L, 2060L)
132     fig = plt.figure(1)
133     ax = fig.add_subplot(111)
134     ax.imshow(a)
135     plt.title('original data')
136 
137     rebuild_value = rbm.rebuild_value.transpose()
138     b = rbm.visualize(rebuild_value)  #(2060L, 2060L)
139     fig = plt.figure(2)
140     ax = fig.add_subplot(111)
141     ax.imshow(b)
142     plt.title('rebuild data')
143 
144     hidden_value = rbm.hiden_value.transpose()
145     c = rbm.visualize(hidden_value)  #(782L, 782L)
146     fig = plt.figure(3)
147     ax = fig.add_subplot(111)
148     ax.imshow(c)
149     plt.title('hidden data')
150 
151     w_value = rbm.w
152     d = rbm.visualize(w_value)  #(291L, 291L)
153     fig = plt.figure(4)
154     ax = fig.add_subplot(111)
155     ax.imshow(d)
156     plt.title('weight value(w)')
157     plt.show()

 

 

posted on 2016-08-29 16:58  1357  阅读(646)  评论(0编辑  收藏  举报

导航