MySQL——事务以及一些个了解知识点(视图、触发器、存储过程、函数、索引)
pymysql补充
# 1.针对增删改 pymysql需要二次确认才能真正的操作数据
import pymysql
conn = pymysql.connect(
host='127.0.0.1',
port=3306,
user='root',
password='yumi_0405',
db='day48',
charset='utf8',
autocommit=True # 让sql语句执行后自动提交
)
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 增
sql = 'insert into user(name, password) values(%s,%s)'
# cursor.execute(sql,('yumi',123))
cursor.executemany(sql,[('yumi',123),('egon',123),('jason',123)])
# 改
sql = 'update user set password=%s where name=%s and password=%s'
cursor.execute(sql,(456,'yumi',123))
# 删
sql = 'delete from user where name=%s and password=%s'
cursor.execute(sql,('yumi',456))
# 但凡涉及到增删改操作,都需要二次确认来保存到数据库
# conn.commit() 提交sql语句的执行结果并保存到数据库
# 一次插入多条数据
cursor.executemany(sql,[('yumi',123),('egon',123),('jason',123)])
视图(了解)
什么是视图
视图就是通过查询得到一张虚拟表,然后保存下来,下次可以直接使用
其实视图也是表
为什么要用视图
如果要频繁的操作一张虚拟表(拼表组成的),你就可以制作成视图 后续直接操作
如何操作
# 固定语法
create view 表名 as 虚拟表的查询sql语句
# 具体操作
create view teacher2course as
select * from teacher INNER JOIN course
on teacher.tid = course.teacher_id
;
# 注意
-- 1 创建视图在硬盘上只会有表结构 没有表数据(数据还是来自于之前的表)
-- 2 视图一般只用来查询 里面的数据不要继续修改 可能会影响真正的表
触发器(了解)
什么是触发器
在满足对表数据进行增、删、改的情况下,自动触发的功能
为什么要用触发器
使用触发器可以帮助我们实现监控、日志...
如何操作
触发器可以在六种情况下自动触发 增前 增后 删前删后 改前改后
create trigger 触发器的名字 before/after insert/update/delete on 表名
for each row
begin
sql语句
end
# 具体使用 针对触发器的名字 我们通常需要做到见名知意
# 针对增
create trigger tri_before_insert_t1 before insert on t1
for each row
begin
sql语句
end
create trigger tri_after_insert_t1 after insert on t1
for each row
begin
sql语句
end
"""针对删除和修改 书写格式一致"""
# ps:修改MySQL默认的语句结束符 只作用于当前窗口
delimiter $$ # 将默认的结束符号由;改为$$
delimiter ;
# 案例
CREATE TABLE cmd (
id INT PRIMARY KEY auto_increment,
USER CHAR (32),
priv CHAR (10),
cmd CHAR (64),
sub_time datetime, #提交时间
success enum ('yes', 'no') #0代表执行失败
);
CREATE TABLE errlog (
id INT PRIMARY KEY auto_increment,
err_cmd CHAR (64),
err_time datetime
);
"""
当cmd表中的记录succes字段是no那么就触发触发器的执行去errlog表中插入数据
NEW指代的就是一条条数据对象
"""
delimiter $$
create trigger tri_after_insert_cmd after insert on cmd
for each row
begin
if NEW.success = 'no' then
insert into errlog(err_cmd,err_time) values(NEW.cmd,NEW.sub_time);
end if;
end $$
delimiter ;
# 向cmd表插入数据
INSERT INTO cmd (
USER,
priv,
cmd,
sub_time,
success
)
VALUES
('jason','0755','ls -l /etc',NOW(),'yes'),
('jason','0755','cat /etc/passwd',NOW(),'no'),
('jason','0755','useradd xxx',NOW(),'no'),
('jason','0755','ps aux',NOW(),'yes');
# 删除触发器
drop trigger tri_after_insert_cmd;
事务(掌握)
什么是事务
开启一个事务可以包含多条sql语句
这些sql语句要么同时成功要么一个都别想成功 称之为事务的原子性
事务的作用
"""
保证了对数据操作的安全性
"""
eg:还钱的例子
egon用银行卡给我的支付宝转账1000
1 将egon银行卡账户的数据减1000块
2 将jason支付宝账户的数据加1000块
你在操作多条数据的时候可能会出现某几条操作不成功的情况
事务的四大特性
'''
ACID
原子性(Atomicity):事务包含的所有操作要么全部成功,要么全部失败回滚
一致性(Consistency):一个事务在执行之前和执行之后必须处于一致性
一致性跟原子性是密切相关的
隔离性(Isolation):
一个事务的执行不能被其他事务所干扰
(即一个事务内部的操作及使用到的数据对并发的其他事务是隔离的,并发执行的事务之间也是互相不干扰的)
持久性(Durability):
一个事务一旦被提交,则对数据库中数据的修改是永久性的,
接下来的其他操作或者故障不应该对其有任何的影响
'''
如何使用事务
# 事务相关的关键字
# 1 开启事务
start transaction;
# 2 回滚(回到事务执行之前的状态)
rollback;
# 3 确认(确认之后就无法回滚了)
commit;
"""模拟转账功能"""
create table user(
id int primary key auto_increment,
name char(16),
balance int
);
insert into user(name,balance) values
('jason',1000),
('egon',1000),
('tank',1000);
# 1 先开启事务
start transaction;
# 2 多条sql语句
update user set balance=900 where name='jason';
update user set balance=1010 where name='egon';
update user set balance=1090 where name='tank';
"""
总结
当你想让多条sql语句保持一致性 要么同时成功要么同时失败
你就应该考虑使用事务
"""
存储过程(了解)
存储过程就类似于python中的自定义函数
存储过程存放于MySQL服务端中
存储过程内包含了一系列可执行sql语句,可以直接通过调用存储过程来出发内部的sql语句
基本使用
create procedure 存储过程的名字(形参1,形参2,...)
begin
sql代码
end
# 调用
call 存储过程的名字();
三种开发模式
# 第一种(sql语句全部写好,开发人员只需要调用就好)
"""
应用程序:程序员写代码开发
MySQL:提前编写好存储过程,供应用程序调用
好处:开发效率提升了 执行效率也上去了
缺点:考虑到认为元素、跨部门沟通的问题 后续的存储过程的扩展性差
"""
# 第二种(开发人员自己编写sql语句)
"""
应用程序:程序员写代码开发之外 设计到数据库操作也自己动手写
优点:扩展性很高
缺点:
开发效率降低
编写sql语句太过繁琐 而且后续还需要考虑sql优化的问题
"""
# 第三种 (常用)
"""
应用程序:只写程序代码 不写sql语句 基于别人写好的操作MySQL的python框架直接调用操作即可
ORM框架
优点:开发效率比上面两种情况都要高
缺点:语句的扩展性差 可能会出现效率低下的问题
"""
存储过程具体演示
delimiter $$
create procedure p1(
in m int, # 只能否够接收 m不能返回
in n int,
out res int # 该形参可以返回
)
begin
select tname from teacher where tid>m and tid<n;
set res=666; # 将res变量修改 用来标识当前的存储过程代码确实执行了
end $$
delimiter ;
# 针对形参res 不能直接传数据 应该传一个变量名
call p1(1,5,10)
'''
1414 - OUT or INOUT argument 3 for routine day48.p1 is not a variable or NEW pseudo-variable in BEFORE trigger
'''
# 定义变量
set @ret = 10;
# 查看变量对应的值
select @ret; # @ret=10
call p1(1,5,@ret);
select @ret; # @ret=666
在pymysql模块中如何调用存储过程
import pymysql
conn = pymysql.connect(
host = '127.0.0.1',
port = 3306,
user = 'root',
passwd = 'yumi_0405',
db = 'day48',
charset = 'utf8',
autocommit = True
)
cursor = conn.cursor(pymysql.cursors.DictCursor)
# 调用存储过程
cursor.callproc('p1',(1,5,10))
"""
pymysql模块底层已经将传入的1,5,10进行了转换所以能直接得出结果
@_p1_0=1
@_p1_1=5
@_p1_2=10
"""
# print(cursor.fetchall())
cursor.execute('select @_p1_2;')
print(cursor.fetchall()) # [{'@_p1_2':666}]
内置函数(了解)
跟存储过程是有区别的,存储过程是自定义函数,函数就类似于是内置函数
('jason','0755','ls -l /etc',NOW(),'yes')
CREATE TABLE blog (
id INT PRIMARY KEY auto_increment,
NAME CHAR (32),
sub_time datetime
);
INSERT INTO blog (NAME, sub_time)
VALUES
('第1篇','2015-03-01 11:31:21'),
('第2篇','2015-03-11 16:31:21'),
('第3篇','2016-07-01 10:21:31'),
('第4篇','2016-07-22 09:23:21'),
('第5篇','2016-07-23 10:11:11'),
('第6篇','2016-07-25 11:21:31'),
('第7篇','2017-03-01 15:33:21'),
('第8篇','2017-03-01 17:32:21'),
('第9篇','2017-03-01 18:31:21');
SELECT
DATE_FORMAT( sub_time, '%Y-%m' ),
COUNT( id )
FROM
blog
GROUP BY
DATE_FORMAT( sub_time, '%Y-%m' );
流程控制(了解)
# if判断
delimiter //
CREATE PROCEDURE proc_if ()
BEGIN
declare i int default 0;
if i = 1 THEN
SELECT 1;
ELSEIF i = 2 THEN
SELECT 2;
ELSE
SELECT 7;
END IF;
END //
delimiter ;
# while循环
delimiter //
CREATE PROCEDURE proc_while ()
BEGIN
DECLARE num INT ;
SET num = 0 ;
WHILE num < 10 DO
SELECT
num ;
SET num = num + 1 ;
END WHILE ;
索引理论(了解,日后再扩展)
什么是索引
ps:数据都是存在与硬盘上的,查询数据不可避免的需要进行IO操作
索引:就是一种数据结构,类似于书的目录。意味着以后在查询数据的应该先找目录再找数据,而不是一页一页的翻书,从而提升查询速度降低IO操作
索引在MySQL中也叫“键”,是存储引擎用于快速查找记录的一种数据结构
- primary key
- unique key
- index key
注意foreign key不是用来加速查询用的,不在我们的而研究范围之内
上面的三种key,前面两种除了可以增加查询速度之外各自还具有约束条件,而最后一种index key没有任何的约束条件,只是用来帮助你快速查询数据
本质
通过不断的缩小想要的数据范围筛选出最终的结果,同时将随机事件(一页一页的翻)
变成顺序事件(先找目录、找数据)
也就是说有了索引机制,就可以总是用一种固定的方式查找数据
一张表中可以有多个索引(多个目录)
索引虽然能加快查询速度但是也有缺点
- 当表中有大量数据存在的前提下 创建索引速度会很慢
- 在索引创建完毕之后 对表的查询性能会大幅度的提升 但是写的性能也会大幅度的降低
b+树
"""
只有叶子节点存放的是真实的数据 其他节点存放的是虚拟数据 仅仅是用来指路的
树的层级越高查询数据所需要经历的步骤就越多(树有几层查询数据就需要几步)
一个磁盘块存储是有限制的
为什么建议你将id字段作为索引
占得空间少 一个磁盘块能够存储的数据多
那么久降低了树的高度 从而减少查询次数
"""
聚集索引(primary key)
"""
聚集索引指的就是主键
Innodb 只有两个文件 直接将主键存放在了idb表中
MyIsam 三个文件 单独将索引存在一个文件
"""
辅助索引(unique,index)
-
查询数据的时候不可能一直使用到主键,也有可能会用到其他字段
-
可以根据情况给其他字段设置辅助索引(也是一个b+树)
"""
叶子节点存放的是数据对应的主键值
先按照辅助索引拿到数据的主键值
之后还是需要去主键的聚集索引里面查询数据
"""
覆盖索引
在辅助索引的叶子节点就已经拿到了需要的数据
# 给name设置辅助索引
select name from user where name='jason';
# 非覆盖索引
select age from user where name='jason';
测试索引是否有效的代码
**准备**
```mysql
#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);
#2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,'jason','male',concat('jason',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号
#3. 查看存储过程
show create procedure auto_insert1\G
#4. 调用存储过程
call auto_insert1();
```
``` mysql
# 表没有任何索引的情况下
select * from s1 where id=30000;
# 避免打印带来的时间损耗
select count(id) from s1 where id = 30000;
select count(id) from s1 where id = 1;
# 给id做一个主键
alter table s1 add primary key(id); # 速度很慢
select count(id) from s1 where id = 1; # 速度相较于未建索引之前两者差着数量级
select count(id) from s1 where name = 'jason' # 速度仍然很慢
"""
范围问题
"""
# 并不是加了索引,以后查询的时候按照这个字段速度就一定快
select count(id) from s1 where id > 1; # 速度相较于id = 1慢了很多
select count(id) from s1 where id >1 and id < 3;
select count(id) from s1 where id > 1 and id < 10000;
select count(id) from s1 where id != 3;
alter table s1 drop primary key; # 删除主键 单独再来研究name字段
select count(id) from s1 where name = 'jason'; # 又慢了
create index idx_name on s1(name); # 给s1表的name字段创建索引
select count(id) from s1 where name = 'jason' # 仍然很慢!!!
"""
再来看b+树的原理,数据需要区分度比较高,而我们这张表全是jason,根本无法区分
那这个树其实就建成了“一根棍子”
"""
select count(id) from s1 where name = 'xxx';
# 这个会很快,我就是一根棍,第一个不匹配直接不需要再往下走了
select count(id) from s1 where name like 'xxx';
select count(id) from s1 where name like 'xxx%';
select count(id) from s1 where name like '%xxx'; # 慢 最左匹配特性
# 区分度低的字段不能建索引
drop index idx_name on s1;
# 给id字段建普通的索引
create index idx_id on s1(id);
select count(id) from s1 where id = 3; # 快了
select count(id) from s1 where id*12 = 3; # 慢了 索引的字段一定不要参与计算
drop index idx_id on s1;
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx';
# 针对上面这种连续多个and的操作,mysql会从左到右先找区分度比较高的索引字段,先将整体范围降下来再去比较其他条件
create index idx_name on s1(name);
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 并没有加速
drop index idx_name on s1;
# 给name,gender这种区分度不高的字段加上索引并不难加快查询速度
create index idx_id on s1(id);
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 快了 先通过id已经讲数据快速锁定成了一条了
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 慢了 基于id查出来的数据仍然很多,然后还要去比较其他字段
drop index idx_id on s1
create index idx_email on s1(email);
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 快 通过email字段一剑封喉
```
#### 联合索引
```mysql
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx';
# 如果上述四个字段区分度都很高,那给谁建都能加速查询
# 给email加然而不用email字段
select count(id) from s1 where name='jason' and gender = 'male' and id > 3;
# 给name加然而不用name字段
select count(id) from s1 where gender = 'male' and id > 3;
# 给gender加然而不用gender字段
select count(id) from s1 where id > 3;
# 带来的问题是所有的字段都建了索引然而都没有用到,还需要花费四次建立的时间
create index idx_all on s1(email,name,gender,id); # 最左匹配原则,区分度高的往左放
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 速度变快
```
慢查询日志
设定一个时间检测所有超出该时间的sql语句,然后针对性的进行优化!