最长上升子序列nlogn算法 (转)

 

这题目是经典的DP题目,也可叫作LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。

A.
O(n^2)算法分析如下:


(a[1]...a[n] 存的都是输入的数)
1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列; 

 

2、若从a[n-1]开始查找,则存在下面的两种可能性:
(1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n];
(2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。 
 

 

3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:
在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。 

 

4、为算法上的需要,定义一个数组:
int d[n][3];
d[t][0]表示a[t];
d[t][1]表示从i位置到达n的最长不下降子序列的长度;
d[t][2]表示从i位置开始最长不下降子序列的下一个位置。

 

实现代码如下:

 

 1 #include <iostream>
 2 using namespace std;
 3 int main(void)
 4 {
 5     int i,j,n,a[100],b[100],max;
 6     while(cin>>n)
 7     {
 8         for(i=0;i<n;i++)
 9             cin>>a[i];
10         b[0]=1;             //初始化,以a[0]结尾的最长递增子序列长度为1
11         for(i=1;i<n;i++)
12         {
13             b[i]=1;         //b[i]最小值为1
14             for(j=0;j<i;j++)
15                 if(a[i]>a[j]&&b[j]+1>b[i])
16                     b[i]=b[j]+1;
17         }
18         for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度
19             if(b[i]>max)
20             max=b[i];
21         cout<<max<<endl;
22     }
23       return 0;
24 }

 

显然,这种方法的时间复杂度仍为o(n^2);

B.

最长不下降子序列的O(nlogn)算法分析如下:

设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。

现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t
(2)A[x] < A[y] < A[t]
(3)F[x] = F[y] 

此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢? 

很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。

注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不下降的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。

在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

 

 1 #include <iostream>
 2 using namespace std;
 3 int find(int *a,int len,int n)//若返回值为x,则a[x]>=n>a[x-1]
 4 {
 5     int left=0,right=len,mid=(left+right)/2;
 6     while(left<=right)
 7     {
 8         if(n>a[mid]) left=mid+1;
 9         else if(n<a[mid]) right=mid-1;
10         else return mid;
11         mid=(left+right)/2;
12     }
13     return left;  
14 }
15      
16 void fill(int *a,int n)
17 {
18     for(int i=0;i<=n;i++)
19         a[i]=1000;
20 }
21      
22 int main(void)
23 {
24     int max,i,j,n,a[100],b[100],c[100];
25     while(cin>>n)
26     {
27         fill(c,n+1);
28         for(i=0;i<n;i++)
29             cin>>a[i];
30         c[0]=-1;//     …………………………………1
31         c[1]=a[0];//         …………………………2
32         b[0]=1;//      …………………………………3
33         for(i=1;i<n;i++)//           ………………4
34         {
35             j=find(c,n+1,a[i]);//  …………………5
36             c[j]=a[i];// ………………………………6
37             b[i]=j;//……………………………………7
38         }
39         for(max=i=0;i<n;i++)// ………………………8
40             if(b[i]>max)
41                 max=b[i];
42        cout<<max<<endl;
43     }
44     return 0;
45 }&nbsp;

 

对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
loop invariant : 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
                      2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序
列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)

                      3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。


initialization: 1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
                  2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1
的递增了序列只有一个,c[1]也是最小的;

                  3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.


maintenance: 1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由
c进入循环前单调递增及find函数的性质可知(见find的注释),此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]> c[j-1]的性质仍然成立,即c仍然是单调递增的;

                     2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当然此时c[j]的值仍是最小的;

                     3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;

 

termination: 循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为 len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。

 

 1 #include <iostream>
 2 using namespace std;
 3 int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n
 4 {
 5     int left=0,right=len,mid=(left+right)/2;
 6     while(left<=right)
 7     {
 8        if(n>a[mid]) left=mid+1;
 9        else if(n<a[mid]) right=mid-1;
10        else return mid;
11        mid=(left+right)/2;
12     }
13     return left;
14 }
15      
16 int main(void)
17 {
18     int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标
19     while(cin>>n)
20     {
21         for(i=0;i<n;i++)
22             cin>>a[i];
23         b[0]=1;
24         c[0]=-1;
25         c[1]=a[0];
26         len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.
27         for(i=1;i<n;i++)
28         {
29             j=find(c,len,a[i]);
30             c[j]=a[i];
31             if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len大1
32                 len=j;//更新len
33         }
34         cout<<len<<endl;
35     }
36     return 0;
37 }

 

转自:http://blog.csdn.net/dangwenliang/article/details/5728363

posted @ 2013-05-10 16:32  飞向梦  阅读(497)  评论(0编辑  收藏  举报