欧拉计划第6题题解
Sum square difference
The sum of the squares of the first ten natural numbers is,
\[1^2 + 2^2 + \cdots + 10^2 = 385
\]
The square of the sum of the first ten natural numbers is,
\[(1 + 2 + \cdots + 10)^2 = 55^2 = 3025
\]
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
平方的和与和的平方之差
前十个自然数的平方的和是
\[1^2 + 2^2 + \cdots + 10^2 = 385
\]
前十个自然数的和的平方是
\[(1 + 2 + \cdots + 10)^2 = 55^2 = 3025
\]
因此前十个自然数的平方的和与和的平方之差是 3025 − 385 = 2640。
求前一百个自然数的平方的和与和的平方之差。
解题思路
前 \(n\) 个数的和为 \(\frac{n \cdot (n+1)}{2}\),所以前 \(n\) 个数的和的平方为
\[\frac{n^2 \cdot (n+1)^2}{4}
\]
前 \(n\) 个数的平方和公式为
\[\frac{n \cdot (n+1) \cdot (2n+1)}{6}
\]
所以本题的答案为
\[\frac{n^2 \cdot (n+1)^2}{4} - \frac{n \cdot (n+1) \cdot (2n+1)}{6}
\]
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
long long f(long long n) {
return n*n*(n+1)*(n+1)/4 - n*(n+1)*(2*n+1)/6;
}
int main() {
cout << f(100) << endl;
return 0;
}
答案为 \(25164150\)。