HDU1005 Number Sequence 题解 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005
题目大意:
已知:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7
现在告诉你 A,B,n,求 f(n)
解题思路:
矩阵快速幂。
\[\begin{bmatrix}
f(n)\\
f(n-1)
\end{bmatrix}
=
\begin{bmatrix}
A & B \\
1 & 0
\end{bmatrix}^{n-2}
\begin{bmatrix}
f(2)\\
f(1)
\end{bmatrix}
\]
实现代码如下(略丑):
#include <bits/stdc++.h>
using namespace std;
struct Matrix {
int a[2][2];
Matrix() {
memset(a, 0, sizeof(a));
}
};
Matrix multi(Matrix a, Matrix b) {
Matrix c;
for (int i = 0; i < 2; i ++)
for (int j = 0; j < 2; j ++)
for (int k = 0; k < 2; k ++)
c.a[i][k] = (c.a[i][k] + a.a[i][j]*b.a[j][k])%7;
return c;
}
int A, B, n;
Matrix f(int n) {
Matrix a;
a.a[0][0] = A; a.a[0][1] = B;
a.a[1][0] = 1; a.a[1][1] = 0;
if (n == 1) return a;
Matrix b = f(n/2);
b = multi(b, b);
if (n%2) b = multi(b, a);
return b;
}
int main() {
while (~scanf("%d%d%d", &A, &B, &n) && A) {
int ans;
if (n <= 2) ans = 1;
else {
Matrix mm = f(n-2);
ans = (mm.a[0][0] + mm.a[0][1]) % 7;
}
printf("%d\n", ans);
}
return 0;
}