Elasticsearch02
一. analysis与analyzer
analysis(只是一个概念),文本分析是将全文本转换为一系列单词的过程,也叫分词。analysis是通过analyzer(分词器)来实现的,可以使用Elasticsearch内置的分词器,也可以自己去定制一些分词器。除了在数据写入的时候将词条进行转换,那么在查询的时候也需要使用相同的分析器对语句进行分析。
anaylzer是由三部分组成,例如有
Hello a World, the world is beautifu
:1. Character Filter: 将文本中html标签剔除掉。
2. Tokenizer: 按照规则进行分词,在英文中按照空格分词。
3. Token Filter: 去掉stop world(停顿词,a, an, the, is),然后转换小写。
1.1 内置的分词器
分词器名称 | 处理过程 |
---|---|
Standard Analyzer | 默认的分词器,按词切分,小写处理 |
Simple Analyzer | 按照非字母切分(符号被过滤),小写处理 |
Stop Analyzer | 小写处理,停用词过滤(the, a, this) |
Whitespace Analyzer | 按照空格切分,不转小写 |
Keyword Analyzer | 不分词,直接将输入当做输出 |
Pattern Analyzer | 正则表达式,默认是\W+(非字符串分隔) |
1.2 内置分词器示例
A. Standard Analyzer
GET _analyze
{
"analyzer": "standard",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
B. Simple Analyzer
GET _analyze
{
"analyzer": "simple",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
C. Stop Analyzer
GET _analyze
{
"analyzer": "stop",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
D. Whitespace Analyzer
GET _analyze
{
"analyzer": "whitespace",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
E. Keyword Analyzer
GET _analyze
{
"analyzer": "keyword",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
F. Pattern Analyzer
GET _analyze
{
"analyzer": "pattern",
"text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}
1.3 中文分词
中文分词在所有的搜索引擎中都是一个很大的难点,中文的句子应该是切分成一个个的词,一句中文,在不同的上下文中,其实是有不同的理解,例如下面这句话:
这个苹果,不大好吃/这个苹果,不大,好吃
1.3.1 IK分词器
IK分词器支持自定义词库,支持热更新分词字典,地址为 : https://github.com/medcl/elasticsearch-analysis-ik
elasticsearch-plugin.bat install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
安装步骤:
- 下载zip包,下载路径为:https://github.com/medcl/elasticsearch-analysis-ik/releases
- 在Elasticsearch的plugins目录下创建名为 analysis-ik 的目录,将下载好的zip包解压在该目录下
- 在dos命令行进入Elasticsearch的bin目录下,执行 elasticsearch-plugin.bat list 即可查看到该插件,然后重启elasticsearch.bat
IK分词插件对应的分词器有以下几种:
- ik_smart
- ik_max_word
GET _analyze
{
"analyzer": "ik_smart",
"text": "特朗普5日接受采访时表示取消佛罗里达州的议程,他可能在白宫接受共和党总统候选人提名并发表演讲。"
}
GET _analyze
{
"analyzer": "ik_max_word",
"text": "特朗普5日接受采访时表示取消佛罗里达州的议程,他可能在白宫接受共和党总统候选人提名并发表演讲。"
}
1.3.2 HanLP
安装步骤如下:
- 下载ZIP包,下载路径为:https://pan.baidu.com/s/1K4aSgHBpbfF3ET6p0YWgpg,密码:vmvl
- 在Elasticsearch的plugins目录下创建名为 analysis-hanlp 的目录,将下载好的elasticsearch-analysis-hanlp-7.4.2.zip包解压在该目录下.
- 下载词库,地址为:https://github.com/hankcs/HanLP/releases
- 将analyzer-hanlp目录下的data目录删掉,然后将词库
data-for-1.7.5.zip
解压到anayler-hanlp目录下 - 将
第2步
解压目录下的config
文件夹中两个文件hanlp.properties
hanlp-remote.xml
拷贝到ES的根目录中的config目录下 的analysis-hanlp
文件夹中(analyzer-hanlp
目录需要手动去创建)。 - 将
hanlp分词器安装的时候所需的文件\hanlp
文件夹中提供的六个文件拷贝到$ES_HOME\plugins\analysis-hanlp\data\dictionary\custom
目录下。 - 在dos命令行进入Elasticsearch的bin目录下,执行 elasticsearch-plugin.bat list 即可查看到该插件,然后重启elasticsearch.bat
HanLP对应的分词器如下:
- hanlp,默认的分词
- hanlp_standard,标准分词
- hanlp_index,索引分词
- hanlp_nlp,nlp分词
- hanlp_n_short,N-最短路分词
- hanlp_dijkstra,最短路分词
- hanlp_speed,极速词典分词
GET _analyze
{
"analyzer": "hanlp",
"text": "特朗普5日接受采访时表示取消佛罗里达州的议程,他可能在白宫接受共和党总统候选人提名并发表演讲。"
}
1.3.3 pinyin分词器
安装步骤:
- 下载ZIP包,下载路径为:https://github.com/medcl/elasticsearch-analysis-pinyin/releases
- 在Elasticsearch的plugins目录下创建名为 analyzer-pinyin 的目录,将下载好的elasticsearch-analysis-pinyin-7.4.2.zip包解压在该目录下.
- 在dos命令行进入Elasticsearch的bin目录下,执行 elasticsearch-plugin.bat list 即可查看到该插件,然后重启elasticsearch.bat
1.4 中文分词演示
ik_smart
GET _analyze
{
"analyzer": "ik_smart",
"text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}
hanlp
GET _analyze
{
"analyzer": "hanlp",
"text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}
hanlp_standard
GET _analyze
{
"analyzer": "hanlp_standard",
"text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}
hanlp_speed
GET _analyze
{
"analyzer": "hanlp_speed",
"text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}
1.5 分词的实际应用
在如上列举了很多的分词器,那么在实际中该如何应用?
1.5.1 设置mapping
要想使用分词器,先要指定我们想要对那个字段使用何种分词,如下所示:
# 先删除当前索引
DELETE user
# 自定义某个字段的分词器
PUT user
{
"mappings": {
"properties": {
"content": {
"type": "text",
"analyzer": "hanlp_index"
}
}
}
}
1.5.2 插入数据
POST user/_bulk
{"index":{}}
{"content":"如不能登录,请在百端登录百度首页,点击【登录遇到问题】,进行找回密码操作"}
{"index":{}}
{"content":"网盘客户端访问隐藏空间需要输入密码方可进入。"}
{"index":{}}
{"content":"剑桥的网盘不好用"}
1.5.3 查询
GET user/_search
{
"query": {
"match": {
"content": "密码"
}
}
}
1.6 拼音分词器
在查询的过程中我们可能需要使用拼音来进行查询,在中文分词器中我们介绍过 pinyin
分词器,那么在实际的工作中该如何使用呢?
1.6.1 设置settings
PUT /medcl
{
"settings" : {
"analysis" : {
"analyzer" : {
"pinyin_analyzer" : {
"tokenizer" : "my_pinyin"
}
},
"tokenizer" : {
"my_pinyin" : {
"type" : "pinyin",
"keep_separate_first_letter" : false,
"keep_full_pinyin" : true,
"keep_original" : true,
"limit_first_letter_length" : 16,
"lowercase" : true,
"remove_duplicated_term" : true
}
}
}
}
}
如上所示,我们基于现有的拼音分词器定制了一个名为 pinyin_analyzer
这样一个分词器。可用的参数可以参照:https://github.com/medcl/elasticsearch-analysis-pinyin
1.6.2 设置mapping
PUT medcl/_mapping
{
"properties": {
"name": {
"type": "keyword",
"fields": {
"pinyin": {
"type": "text",
"analyzer": "pinyin_analyzer",
"boost": 10
}
}
}
}
}
1.6.3 数据的插入
POST medcl/_bulk
{"index":{}}
{"name": "马云"}
{"index":{}}
{"name": "马化腾"}
{"index":{}}
{"name": "李彦宏"}
{"index":{}}
{"name": "张朝阳"}
{"index":{}}
{"name": "刘强东"}
1.6.4 查询
GET medcl/_search
{
"query": {
"match": {
"name.pinyin": "zcy"
}
}
}
1.7 中文、拼音混合查找
1.7.1 设置settings
PUT product
{
"settings": {
"analysis": {
"analyzer": {
"hanlp_standard_pinyin":{
"type": "custom",
"tokenizer": "hanlp_standard",
"filter": ["my_pinyin"]
}
},
"filter": {
"my_pinyin": {
"type" : "pinyin",
"keep_separate_first_letter" : false,
"keep_full_pinyin" : true,
"keep_original" : true,
"limit_first_letter_length" : 16,
"lowercase" : true,
"remove_duplicated_term" : true
}
}
}
}
}
1.7.2 mappings设置
PUT product/_mapping
{"properties": {
"content": {
"type": "text",
"analyzer": "hanlp_standard_pinyin"
}
}
}
1.7.3 添加数据
POST product/_bulk
{"index":{}}
{"content":"如不能登录,请在百端登录百度首页,点击【登录遇到问题】,进行找回密码操作"}
{"index":{}}
{"content":"网盘客户端访问隐藏空间需要输入密码方可进入。"}
{"index":{}}
{"content":"剑桥的网盘不好用"}
1.7.4 查询
GET product/_search
{
"query": {
"match": {
"content": "wangpan"
}
},
"highlight": {
"pre_tags": "<em>",
"post_tags": "</em>",
"fields": {
"content": {}
}
}
}
属性名 | 解释 |
---|---|
keep_first_letter | true: 将所有汉字的拼音首字母拼接到一起:李小璐 -> lxl |
keep_full_pinyin | true:在最终的分词结果中,会出现每个汉字的全拼:李小璐 -> li , xiao, lu |
keep_none_chinese | true: 是否保留非中文本,例如 java程序员, 在最终的分词结果单独出现 java |
keep_separate_first_lett | true: 在最终的分词结果单独将每个汉字的首字母作为一个结果:李小璐 -> l, y |
keep_joined_full_pinyin | true:在最终的分词结果中将所有汉字的拼音放到一起:李小璐 -> lixiaolu |
keep_none_chinese_in_joined_full_pinyin | true:将非中文内容文字和中文汉字拼音拼到一起 |
none_chinese_pinyin_tokenize | true: 会将非中文按照可能的拼音进行拆分:wvwoxvlu -> w, v, wo, x, v, lu |
keep_original | true: 保留原始的输入 |
remove_duplicated_term | true: 移除重复 |
二. SpringBoot与Elasticsearch的整合
2.1 添加依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
2.2 获取ElasticsearchTemplate
package com.qf.config;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
@Configuration
public class ElasticSearchConfig extends AbstractElasticsearchConfiguration {
@Bean
public RestHighLevelClient elasticsearchClient() {
//spring官网
// final ClientConfiguration clientConfiguration = ClientConfiguration.builder()
// .connectedTo("localhost:9200")
// .build();
// return RestClients.create(clientConfiguration).rest();
//elasticsearch官网
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("localhost", 9200, "http")));
return client;
}
@Bean
public ElasticsearchRestTemplate elasticsearchRestTemplate() {
return new ElasticsearchRestTemplate(elasticsearchClient());
}
}
2.3 索引操作
package com.qf;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.CreateIndexResponse;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
@SpringBootTest
class SpringbootEs04ApplicationTests {
@Test
void contextLoads() {
}
@Autowired
private RestHighLevelClient elasticsearchClient;
//创建索引
@Test
public void testCreateIndexRequest()throws Exception{
CreateIndexRequest createIndexRequest = new CreateIndexRequest("my_index");
CreateIndexResponse createIndexResponse =
elasticsearchClient.indices().create(createIndexRequest, RequestOptions.DEFAULT);
System.out.println(createIndexResponse);
}
//判断索引是否存在
@Test
public void testGetIndexRequest()throws Exception{
GetIndexRequest getIndexRequest = new GetIndexRequest("my_index");
boolean exists =
elasticsearchClient.indices().exists(getIndexRequest, RequestOptions.DEFAULT);
System.out.println(exists);
}
//删除索引
@Test
public void testDeleteIndexRequest()throws Exception{
DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("my_index");
AcknowledgedResponse acknowledgedResponse =
elasticsearchClient.indices().delete(deleteIndexRequest, RequestOptions.DEFAULT);
System.out.println(acknowledgedResponse.isAcknowledged());
}
}
2.3 文档操作
创建实体类
package com.qf.pojo;
import com.fasterxml.jackson.annotation.JsonFormat;
import com.fasterxml.jackson.annotation.JsonIgnore;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.Date;
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Person {
@JsonIgnore//忽略该字段
private Integer id;
private String name;
private Integer age;
@JsonFormat(pattern = "yyyy-MM-dd")//格式化该字段
private Date birthday;
}
操作文档
package com.qf;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.qf.pojo.Person;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.CreateIndexResponse;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.common.xcontent.json.JsonXContent;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
@SpringBootTest
class SpringbootEs04ApplicationTests {
@Test
void contextLoads() {
}
//----------------------文档操作-------------------------
@Autowired
private RestHighLevelClient elasticsearchClient;
ObjectMapper mapper = new ObjectMapper();
String index = "person";
//创建索引
@Test
public void createIndex() throws IOException {
//1. 准备关于索引的settings
Settings.Builder settings = Settings.builder()
.put("number_of_shards", 3)
.put("number_of_replicas", 1);
//2. 准备关于索引的结构mappings
XContentBuilder mappings = JsonXContent.contentBuilder()
.startObject()
.startObject("properties")
.startObject("name")
.field("type","text")
.endObject()
.startObject("age")
.field("type","integer")
.endObject()
.startObject("birthday")
.field("type","date")
.field("format","yyyy-MM-dd")
.endObject()
.endObject()
.endObject();
//3. 将settings和mappings封装到一个Request对象
CreateIndexRequest request = new CreateIndexRequest(index)
.settings(settings)
.mapping(mappings);
//4. 通过client对象去连接ES并执行创建索引
CreateIndexResponse createIndexResponse = elasticsearchClient.indices().create(request, RequestOptions.DEFAULT);
//5. 输出
System.out.println(createIndexResponse);
}
//添加文档
@Test
public void createDoc() throws IOException {
//1. 准备一个json数据
Person person = new Person(1,"张三",23,new Date());
String json = mapper.writeValueAsString(person);
//2. 准备一个request对象(手动指定id)
IndexRequest request = new IndexRequest(index);
request.source(json, XContentType.JSON);
//3. 通过client对象执行添加
IndexResponse resp = elasticsearchClient.index(request, RequestOptions.DEFAULT);
//4. 输出返回结果
System.out.println(resp.toString());
}
//修改文档
@Test
public void updateDoc() throws IOException {
//1. 创建一个Map,指定需要修改的内容
Map<String,Object> doc = new HashMap<>();
doc.put("name","李四");
String docId = "4omnl3YBRfk9XpJKTqZR";//通过 GET person/_search 查到对应的_id
//2. 创建request对象,封装数据
UpdateRequest request = new UpdateRequest(index,docId);
request.doc(doc);
//3. 通过client对象执行
UpdateResponse updateResponse = elasticsearchClient.update(request, RequestOptions.DEFAULT);
//4. 输出返回结果
System.out.println(updateResponse);
}
//删除文档
@Test
public void deleteDoc() throws IOException {
String docId = "4omnl3YBRfk9XpJKTqZR";//通过 GET person/_search 查到对应的_id
//1. 封装Request对象
DeleteRequest request = new DeleteRequest(index,docId);
//2. client执行
DeleteResponse deleteResponse = elasticsearchClient.delete(request, RequestOptions.DEFAULT);
//3. 输出结果
System.out.println(deleteResponse);
}
//批量添加
@Test
public void bulkCreateDoc() throws IOException {
//1. 准备多个json数据
Person p1 = new Person(1,"张三",23,new Date());
Person p2 = new Person(2,"李四",24,new Date());
Person p3 = new Person(3,"王五",25,new Date());
String json1 = mapper.writeValueAsString(p1);
String json2 = mapper.writeValueAsString(p2);
String json3 = mapper.writeValueAsString(p3);
//2. 创建Request,将准备好的数据封装进去
BulkRequest request = new BulkRequest();
request.add(new IndexRequest(index).source(json1,XContentType.JSON));
request.add(new IndexRequest(index).source(json2,XContentType.JSON));
request.add(new IndexRequest(index).source(json3,XContentType.JSON));
//3. 用client执行
BulkResponse bulkResponse = elasticsearchClient.bulk(request, RequestOptions.DEFAULT);
//4. 输出结果
System.out.println(bulkResponse);
}
//批量删除
@Test
public void bulkDeleteDoc() throws IOException {
String docId_1 = "44m7l3YBRfk9XpJKdKZn";//通过 GET person/_search 查到对应的_id
String docId_2 = "5Im7l3YBRfk9XpJKdKZn";//通过 GET person/_search 查到对应的_id
String docId_3 = "5Ym7l3YBRfk9XpJKdKZn";//通过 GET person/_search 查到对应的_id
//1. 封装Request对象
BulkRequest request = new BulkRequest();
request.add(new DeleteRequest(index,docId_1));
request.add(new DeleteRequest(index,docId_2));
request.add(new DeleteRequest(index,docId_3));
//2. client执行
BulkResponse bulkResponse = elasticsearchClient.bulk(request, RequestOptions.DEFAULT);
//3. 输出
System.out.println(bulkResponse);
}
}
2.4 查询操作
创建索引,索引名:sms-logs-index,指定数据结构如下:
创建实体类
package com.qf.pojo;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.Date;
@Data
@NoArgsConstructor
@AllArgsConstructor
public class SmsLogs {
private String id;// 唯一ID 1
private Date createDate;// 创建时间
private Date sendDate; // 发送时间
private String longCode;// 发送的长号码
private String mobile;// 下发手机号
private String corpName;// 发送公司名称
private String smsContent; // 下发短信内容
private Integer state; // 短信下发状态 0 成功 1 失败
private Integer operatorId; // '运营商编号 1 移动 2 联通 3 电信
private String province;// 省份
private String ipAddr; //下发服务器IP地址
private Integer replyTotal; //短信状态报告返回时长(秒)
private Integer fee; // 费用
}
创建索引并添加测试数据
package com.qf;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.qf.pojo.Person;
import com.qf.pojo.SmsLogs;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.CreateIndexResponse;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.common.xcontent.json.JsonXContent;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
@SpringBootTest
class SpringbootEs04ApplicationTests {
@Test
void contextLoads() {
}
//----------------------查询操作-------------------------
@Autowired
private RestHighLevelClient elasticsearchClient;
ObjectMapper mapper = new ObjectMapper();
String index = "sms-logs-index";
//添加索引
@Test
public void createSmsLogsIndex() throws IOException {
//1. settings
Settings.Builder settings = Settings.builder()
.put("number_of_shards", 3)
.put("number_of_replicas", 1);
//2. mapping.
XContentBuilder mapping = JsonXContent.contentBuilder()
.startObject()
.startObject("properties")
.startObject("createDate")
.field("type", "date")
.endObject()
.startObject("sendDate")
.field("type", "date")
.endObject()
.startObject("longCode")
.field("type", "keyword")
.endObject()
.startObject("mobile")
.field("type", "keyword")
.endObject()
.startObject("corpName")
.field("type", "keyword")
.endObject()
.startObject("smsContent")
.field("type", "text")
.field("analyzer", "ik_max_word")
.endObject()
.startObject("state")
.field("type", "integer")
.endObject()
.startObject("operatorId")
.field("type", "integer")
.endObject()
.startObject("province")
.field("type", "keyword")
.endObject()
.startObject("ipAddr")
.field("type", "ip")
.endObject()
.startObject("replyTotal")
.field("type", "integer")
.endObject()
.startObject("fee")
.field("type", "long")
.endObject()
.endObject()
.endObject();
//3. 添加索引.
CreateIndexRequest request = new CreateIndexRequest(index);
request.settings(settings);
request.mapping( mapping);
elasticsearchClient.indices().create(request, RequestOptions.DEFAULT);
System.out.println("OK!!");
}
//添加测试数据
@Test
public void addTestData() throws IOException {
BulkRequest request = new BulkRequest();
SmsLogs smsLogs1 = new SmsLogs();
smsLogs1.setId("1");
smsLogs1.setMobile("13100000000");
smsLogs1.setCorpName("盒马鲜生");
smsLogs1.setCreateDate(new Date());
smsLogs1.setSendDate(new Date());
smsLogs1.setIpAddr("10.126.2.9");
smsLogs1.setLongCode("10660000988");
smsLogs1.setReplyTotal(15);
smsLogs1.setState(0);
smsLogs1.setSmsContent("【盒马】您尾号12345678的订单已开始配送,请在您指定的时间收货不要走开 哦~配送员:" + "刘三,电话:13800000000");
smsLogs1.setProvince("北京");
smsLogs1.setOperatorId(2);
smsLogs1.setFee(5);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs1), XContentType.JSON));
smsLogs1.setMobile("13100000001");
smsLogs1.setProvince("上海");
smsLogs1.setSmsContent("【盒马】您尾号7775678的订单已开始配送,请在您指定的时间收货不要走开 哦~配送员:" + "王五,电话:13800000001");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs1), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
SmsLogs smsLogs2 = new SmsLogs();
smsLogs2.setId("2");
smsLogs2.setMobile("18000000000");
smsLogs2.setCorpName("滴滴打车");
smsLogs2.setCreateDate(new Date());
smsLogs2.setSendDate(new Date());
smsLogs2.setIpAddr("10.126.2.8");
smsLogs2.setLongCode("10660000988");
smsLogs2.setReplyTotal(50);
smsLogs2.setState(1);
smsLogs2.setSmsContent("【滴滴单车平台】专属限时福利!青桔/小蓝月卡立享5折,特惠畅骑30天。" + "戳 https://xxxxxx退订TD");
smsLogs2.setProvince("上海");
smsLogs2.setOperatorId(3);
smsLogs2.setFee(7);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs2), XContentType.JSON));
smsLogs2.setMobile("18000000001");
smsLogs2.setProvince("武汉");
smsLogs2.setSmsContent("【滴滴单车平台】专属限时福利!青桔/小蓝月卡立享5折,特惠畅骑30天。" + "戳 https://xxxxxx退订TD");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs2), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
SmsLogs smsLogs3 = new SmsLogs();
smsLogs3.setId("3");
smsLogs3.setMobile("13900000000");
smsLogs3.setCorpName("招商银行");
smsLogs3.setCreateDate(new Date());
smsLogs3.setSendDate(new Date());
smsLogs3.setIpAddr("10.126.2.8");
smsLogs3.setLongCode("10690000988");
smsLogs3.setReplyTotal(50);
smsLogs3.setState(0);
smsLogs3.setSmsContent("【招商银行】尊贵的李四先生,恭喜您获得华为P30 Pro抽奖资格,还可领100 元打" + "车红包,仅限1天");
smsLogs3.setProvince("上海");
smsLogs3.setOperatorId(1);
smsLogs3.setFee(8);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs3), XContentType.JSON));
smsLogs3.setMobile("13990000001");
smsLogs3.setProvince("武汉");
smsLogs3.setSmsContent("【招商银行】尊贵的李四先生,恭喜您获得华为P30 Pro抽奖资格,还可领100 元打" + "车红包,仅限1天");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs3), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
SmsLogs smsLogs4 = new SmsLogs();
smsLogs4.setId("4");
smsLogs4.setMobile("13700000000");
smsLogs4.setCorpName("中国平安保险有限公司");
smsLogs4.setCreateDate(new Date());
smsLogs4.setSendDate(new Date());
smsLogs4.setIpAddr("10.126.2.8");
smsLogs4.setLongCode("10690000998");
smsLogs4.setReplyTotal(18);
smsLogs4.setState(0);
smsLogs4.setSmsContent("【中国平安】奋斗的时代,更需要健康的身体。中国平安为您提供多重健康保 障,在奋斗之路上为您保驾护航。退订请回复TD");
smsLogs4.setProvince("武汉");
smsLogs4.setOperatorId(1);
smsLogs4.setFee(5);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs4), XContentType.JSON));
smsLogs4.setMobile("13700000001");
smsLogs4.setProvince("武汉");
smsLogs4.setSmsContent("【中国平安】奋斗的时代,更需要健康的身体。中国平安为您提供多重健康保 障,在奋斗之路上为您保驾护航。退订请回复TD");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs4), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
SmsLogs smsLogs5 = new SmsLogs();
smsLogs5.setId("5");
smsLogs5.setMobile("13600000000");
smsLogs5.setCorpName("中国移动");
smsLogs5.setCreateDate(new Date());
smsLogs5.setSendDate(new Date());
smsLogs5.setIpAddr("10.126.2.8");
smsLogs5.setLongCode("10650000998");
smsLogs5.setReplyTotal(60);
smsLogs5.setState(0);
smsLogs5.setSmsContent("【北京移动】尊敬的客户137****0000,5月话费账单已送达您的139邮箱," + "点击查看账单详情 http://y.10086.cn/; " + " 回Q关闭通知,关注“中国移动139邮箱”微信随时查账单【中国移动 139邮箱】");
smsLogs5.setProvince("武汉");
smsLogs5.setOperatorId(1);
smsLogs5.setFee(4);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs5), XContentType.JSON));
smsLogs5.setMobile("13600000001");
smsLogs5.setProvince("山西");
smsLogs5.setSmsContent("【北京移动】尊敬的客户137****1234,8月话费账单已送达您的126邮箱,\" + \"点击查看账单详情 http://y.10086.cn/; \" + \" 回Q关闭通知,关注“中国移动126邮箱”微信随时查账单【中国移动 126邮箱】");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs5), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
SmsLogs smsLogs6 = new SmsLogs();
smsLogs6.setId("6");
smsLogs6.setMobile("13500000000");
smsLogs6.setCorpName("途虎养车");
smsLogs6.setCreateDate(new Date());
smsLogs6.setSendDate(new Date());
smsLogs6.setIpAddr("10.126.2.9");
smsLogs6.setLongCode("10690000988");
smsLogs6.setReplyTotal(10);
smsLogs6.setState(0);
smsLogs6.setSmsContent("【途虎养车】亲爱的张三先生/女士,您在途虎购买的货品(单号TH123456)已 到指定安装店多日," + "现需与您确认订单的安装情况,请点击链接按实际情况选择(此链接有效期为72H)。您也可以登录途 虎APP进入" + "“我的-待安装订单”进行预约安装。若您在服务过程中有任何疑问,请致电400-111-8868向途虎咨 询。");
smsLogs6.setProvince("北京");
smsLogs6.setOperatorId(1);
smsLogs6.setFee(3);
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs6), XContentType.JSON));
smsLogs6.setMobile("13500000001");
smsLogs6.setProvince("上海");
smsLogs6.setSmsContent("【途虎养车】亲爱的刘红先生/女士,您在途虎购买的货品(单号TH1234526)已 到指定安装店多日," + "现需与您确认订单的安装情况,请点击链接按实际情况选择(此链接有效期为72H)。您也可以登录途 虎APP进入" + "“我的-待安装订单”进行预约安装。若您在服务过程中有任何疑问,请致电400-111-8868向途虎咨 询。");
request.add(new IndexRequest(index).source(mapper.writeValueAsString(smsLogs6), XContentType.JSON));
// -------------------------------------------------------------------------------------------------------------------
elasticsearchClient.bulk(request, RequestOptions.DEFAULT);
System.out.println("OK!");
}
}
2.5 term&terms查询
2.5.1 term查询
term的查询是代表完全匹配,搜索之前不会对你搜索的关键字进行分词,对你的关键字去文档分词库中去匹配内容。
# term查询,from 表示:limit ?,中问号对应的位置,size 表示:limit x,? ,中问号对应的位置
POST sms-logs-index/_search
{
"from": 0,
"size": 5,
"query": {
"term": {
"province": {
"value": "北京"
}
}
}
}
代码实现:
package com.qf;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import java.io.IOException;
import java.util.Map;
@SpringBootTest
class SpringbootEs04ApplicationTests {
@Test
void contextLoads() {
}
//----------------------查询操作-------------------------
@Autowired
private RestHighLevelClient elasticsearchClient;
String index = "sms-logs-index";
// Java实现
@Test
public void termQuery() throws IOException {
//1. 创建Request对象
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.from(0);
builder.size(5);
builder.query(QueryBuilders.termQuery("province","北京"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 获取到_source中的数据,并展示
for (SearchHit hit : resp.getHits().getHits()) {
Map<String, Object> result = hit.getSourceAsMap();
System.out.println(result);
}
}
}
2.5.2 terms查询
terms和term的查询机制是一样,都不会将指定的查询关键字进行分词,直接去分词库中匹配,找到相应文档内容。
terms是在针对一个字段包含多个值的时候使用。
term:where province = 北京;
terms:where province = 北京 or province = ?or province = ?
# terms查询
POST sms-logs-index/_search
{
"query": {
"terms": {
"province": [
"北京",
"山西"
]
}
}
}
代码实现:
// Java实现
@Test
public void termsQuery() throws IOException {
//1. 创建request
SearchRequest request = new SearchRequest(index);
//2. 封装查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.termsQuery("province","北京","山西"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出_source
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.6 match查询
match查询属于高层查询,他会根据你查询的字段类型不一样,采用不同的查询方式。
- 查询的是日期或者是数值的话,他会将你基于的字符串查询内容转换为日期或者数值对待。
- 如果查询的内容是一个不能被分词的内容(keyword),match查询不会对你指定的查询关键字进行分词。
- 如果查询的内容时一个可以被分词的内容(text),match会将你指定的查询内容根据一定的方式去分词,去分词库中匹配指定的内容。
match查询,实际底层就是多个term查询,将多个term查询的结果给你封装到了一起。
2.6.1 match_all查询
查询全部内容,不指定任何查询条件。
# match_all查询
POST sms-logs-index/_search
{
"query": {
"match_all": {}
}
}
代码实现方式
// java代码实现
@Test
public void matchAllQuery() throws IOException {
//1. 创建Request
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.matchAllQuery());
builder.size(20);// ES默认只查询10条数据,如果想查询更多,添加size
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
System.out.println(resp.getHits().getHits().length);
}
2.6.2 match查询
指定一个Field作为筛选的条件
# match查询
POST sms-logs-index/_search
{
"query": {
"match": {
"smsContent": "收货安装"
}
}
}
代码实现方式
@Test
public void matchQuery() throws IOException {
//1. 创建Request
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.matchQuery("smsContent","收货安装"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.6.3 布尔match查询
基于一个Field匹配的内容,采用and或者or的方式连接
# 布尔match查询
# 内容既包含中国 也包含 健康
POST sms-logs-index/_search
{
"query": {
"match": {
"smsContent": {
"query": "中国 健康",
"operator": "and"
}
}
}
}
# 布尔match查询
# 内容包括健康 或者 包括中国
POST sms-logs-index/_search
{
"query": {
"match": {
"smsContent": {
"query": "中国 健康",
"operator": "or"
}
}
}
}
代码实现方式
// Java代码实现
@Test
public void booleanMatchQuery() throws IOException {
//1. 创建Request
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
//----------------------------------------------------------------------选择AND或者OR
builder.query(QueryBuilders.matchQuery("smsContent","中国 健康").operator(Operator.AND));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.6.4 multi_match查询
match针对一个field做检索,multi_match针对多个field进行检索,多个field对应一个text。
# multi_match 查询
POST sms-logs-index/_search
{
"query": {
"multi_match": {
"query": "北京",
"fields": ["province","smsContent"]
}
}
}
代码实现方式
// java代码实现
@Test
public void multiMatchQuery() throws IOException {
//1. 创建Request
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.multiMatchQuery("北京","province","smsContent"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7 其他查询
2.7.1 id查询
查询所有
# 查询所有
Get sms-logs-index/_search
根据 id 查询(指根据 _id 的值查询)
# id 查询
GET sms-logs-index/_doc/i6dz-X0B3HR5Jl96fnFG
代码实现方式
// Java代码实现
@Test
public void findById() throws IOException {
//1. 创建GetRequest
GetRequest request = new GetRequest(index,"i6dz-X0B3HR5Jl96fnFG");
//2. 执行查询
GetResponse resp = elasticsearchClient.get(request, RequestOptions.DEFAULT);
//3. 输出结果
System.out.println(resp.getSourceAsMap());
}
2.7.2 ids查询
根据多个id查询
# ids查询
POST sms-logs-index/_search
{
"query": {
"ids": {
"values": ["kadz-X0B3HR5Jl96fnFG","jadz-X0B3HR5Jl96fnFG","jqdz-X0B3HR5Jl96fnFG"]
}
}
}
代码实现方式
// Java代码实现
@Test
public void findByIds() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.idsQuery().addIds("kadz-X0B3HR5Jl96fnFG","jadz-X0B3HR5Jl96fnFG","jqdz-X0B3HR5Jl96fnFG"));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.3 prefix查询
前缀查询,可以通过一个关键字去指定一个Field的前缀,从而查询到指定的文档。
#prefix 查询
POST sms-logs-index/_doc/_search
{
"query": {
"prefix": {
"corpName": {
"value": "途虎"
}
}
}
}
代码实现方式
// Java实现前缀查询
@Test
public void findByPrefix() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.prefixQuery("corpName","途虎"));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.4 fuzzy查询
模糊查询,我们输入字符的大概,ES就可以去根据输入的内容大概去匹配一下结果。
# fuzzy查询
# prefix_length 指定前面几个字符是不允许出现错误的
POST sms-logs-index/_search
{
"query": {
"fuzzy": {
"corpName": {
"value": "盒马先生",
"prefix_length": 2
}
}
}
}
代码实现方式
// Java代码实现Fuzzy查询
@Test
public void findByFuzzy() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.fuzzyQuery("corpName","盒马先生").prefixLength(2));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.5 wildcard查询
通配查询,和MySQL中的like是一个套路,可以在查询时,在字符串中指定通配符*和占位符?
# wildcard 查询
# 可以使用*和?指定通配符和占位符
POST /sms-logs-index/_search
{
"query": {
"wildcard": {
"corpName": {
"value": "中国*"
}
}
}
}
代码实现方式
// Java代码实现Wildcard查询
@Test
public void findByWildCard() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.wildcardQuery("corpName","中国*"));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.6 range查询
范围查询,只针对数值类型,对某一个Field进行大于或者小于的范围指定
# range 查询
# 可以使用 gt:> gte:>= lt:< lte:<=
POST /sms-logs-index/_search
{
"query": {
"range": {
"fee": {
"gt": 5,
"lte": 10
}
}
}
}
代码实现方式
// Java实现range范围查询
@Test
public void findByRange() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.rangeQuery("fee").lte(10).gt(5));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.7 regexp查询
正则查询,通过你编写的正则表达式去匹配内容。
# regexp 正则表达式查询
POST /sms-logs-index/_search
{
"query": {
"regexp": {
"mobile": "180[0-9]{8}"
}
}
}
代码实现方式
// Java代码实现正则查询
@Test
public void findByRegexp() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.regexpQuery("mobile","180[0-9]{8}"));
request.source(builder);
//3. 执行
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.7.8 深分页Scroll
ES对from + size是有限制的,from和size二者之和不能超过1W
原理:
- from+size在ES查询数据的方式:
- 第一步现将用户指定的关键进行分词。
- 第二步将词汇去分词库中进行检索,得到多个文档的id。
- 第三步去各个分片中去拉取指定的数据。耗时较长。
- 第四步将数据根据score进行排序。耗时较长。
- 第五步根据from的值,将查询到的数据舍弃一部分。
- 第六步返回结果。
- scroll+size在ES查询数据的方式:
- 第一步现将用户指定的关键进行分词。
- 第二步将词汇去分词库中进行检索,得到多个文档的id。
- 第三步将文档的id存放在一个ES的上下文中。
- 第四步根据你指定的size的个数去ES中检索指定个数的数据,拿完数据的文档id,会从上下文中移除。
- 第五步如果需要下一页数据,直接去ES的上下文中,找后续内容。
- 第六步循环第四步和第五步
# 执行scroll查询,返回第一页数据,并且将文档id信息存放在ES上下文中(内存中),指定生存时间为1分钟
POST sms-logs-index/_search?scroll=1m
{
"query": {
"match_all": {}
},
"size": 2,
"sort": [
{
"fee": {
"order": "desc"
}
}
]
}
# 根据scroll查询下一页数据
POST /_search/scroll
{
"scroll_id": "<根据第一步得到的scorll_id去指定>",
"scroll": "<scorll信息的生存时间>"
}
# 删除scroll在ES上下文中的数据
DELETE /_search/scroll/scroll_id
代码实现方式
// Java实现scroll分页
@Test
public void scrollQuery() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定scroll生存时间1分钟
request.scroll(TimeValue.timeValueMinutes(1L));
//3. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.size(4);
builder.sort("fee", SortOrder.DESC);
builder.query(QueryBuilders.matchAllQuery());
request.source(builder);
//4. 获取返回结果scrollId,source
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
String scrollId = resp.getScrollId();
System.out.println(scrollId);
System.out.println("----------首页---------");
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
while(true) {
//5. 循环 - 创建SearchScrollRequest
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
//6. 指定scrollId的生存时间
scrollRequest.scroll(TimeValue.timeValueMinutes(1L));
//7. 执行查询获取返回结果
SearchResponse scrollResp = elasticsearchClient.scroll(scrollRequest, RequestOptions.DEFAULT);
//8. 判断是否查询到了数据,输出
SearchHit[] hits = scrollResp.getHits().getHits();
if(hits != null && hits.length > 0) {
System.out.println("----------下一页---------");
for (SearchHit hit : hits) {
System.out.println(hit.getSourceAsMap());
}
}else{
//9. 判断没有查询到数据-退出循环
System.out.println("----------结束---------");
break;
}
}
//10. 创建CLearScrollRequest
ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
//11. 指定ScrollId
clearScrollRequest.addScrollId(scrollId);
//12. 删除ScrollId
ClearScrollResponse clearScrollResponse = elasticsearchClient.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);
//13. 输出结果
System.out.println("删除scroll:" + clearScrollResponse.isSucceeded());
}
2.7.9 delete-by-query
根据term,match等查询方式去删除大量的文档
Ps:如果你需要删除的内容,是index下的大部分数据,推荐创建一个全新的index,将保留的文档内容,添加到全新的索引
# delete-by-query
POST sms-logs-index/_delete_by_query
{
"query": {
"range": {
"fee": {
"lt": 9
}
}
}
}
代码实现方式
// Java代码实现
@Test
public void deleteByQuery() throws IOException {
//1. 创建DeleteByQueryRequest
DeleteByQueryRequest request = new DeleteByQueryRequest(index);
//2. 指定检索的条件和SearchRequest指定Query的方式不一样
request.setQuery(QueryBuilders.rangeQuery("fee").lt(9));
//3. 执行删除
BulkByScrollResponse resp = elasticsearchClient.deleteByQuery(request, RequestOptions.DEFAULT);
//4. 输出返回结果
System.out.println(resp.toString());
}
2.8 复合查询
复合过滤器,将你的多个查询条件,以一定的逻辑组合在一起。
- must: 所有的条件,用must组合在一起,表示And的意思
- must_not:将must_not中的条件,全部都不能匹配,标识Not的意思
- should:所有的条件,用should组合在一起,表示Or的意思
# 查询省份为武汉或者北京
# 运营商不是联通(operatorId不等于2)
# smsContent中包含中国和平安
# bool查询
POST sms-logs-index/_search
{
"query": {
"bool": {
"should": [
{
"term": {
"province": {
"value": "北京"
}
}
},
{
"term": {
"province": {
"value": "武汉"
}
}
}
],
"must_not": [
{
"term": {
"operatorId": {
"value": "2"
}
}
}
],
"must": [
{
"match": {
"smsContent": "中国"
}
},
{
"match": {
"smsContent": "平安"
}
}
]
}
}
}
代码实现方式
// Java代码实现Bool查询
@Test
public void BoolQuery() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件
SearchSourceBuilder builder = new SearchSourceBuilder();
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// # 查询省份为武汉或者北京
boolQuery.should(QueryBuilders.termQuery("province","武汉"));
boolQuery.should(QueryBuilders.termQuery("province","北京"));
// # 运营商不是联通
boolQuery.mustNot(QueryBuilders.termQuery("operatorId",2));
// # smsContent中包含中国和平安
boolQuery.must(QueryBuilders.matchQuery("smsContent","中国"));
boolQuery.must(QueryBuilders.matchQuery("smsContent","平安"));
builder.query(boolQuery);
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
2.9 高亮查询
高亮查询就是你用户输入的关键字,以一定的特殊样式展示给用户,让用户知道为什么这个结果被检索出来。
高亮展示的数据,本身就是文档中的一个Field,单独将Field以highlight的形式返回给你。
ES提供了一个highlight属性,和query同级别的。
- fragment_size:指定高亮数据展示多少个字符回来。
- pre_tags:指定前缀标签,举个栗子< font color="red" >
- post_tags:指定后缀标签,举个栗子< /font >
- fields:指定哪几个Field以高亮形式返回
RESTful实现
# highlight查询
POST sms-logs-index/_search
{
"query": {
"match": {
"smsContent": "盒马"
}
},
"highlight": {
"fields": {
"smsContent": {}
},
"pre_tags": "<font color='red'>",
"post_tags": "</font>",
"fragment_size": 10
}
}
代码实现方式
// Java实现高亮查询
@Test
public void highLightQuery() throws IOException {
//1. SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定查询条件(高亮)
SearchSourceBuilder builder = new SearchSourceBuilder();
//2.1 指定查询条件
builder.query(QueryBuilders.matchQuery("smsContent","盒马"));
//2.2 指定高亮
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("smsContent",10)
.preTags("<font color='red'>")
.postTags("</font>");
builder.highlighter(highlightBuilder);
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 获取高亮数据,输出
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getHighlightFields().get("smsContent"));
}
}
2.10 聚合查询
ES的聚合查询和MySQL的聚合查询类似,ES的聚合查询相比MySQL要强大的多,ES提供的统计数据的方式多种多样。
# ES聚合查询的RESTful语法
POST index/_search
{
"aggs": {
"名字(agg)": {
"agg_type": {
"属性": "值"
}
}
}
}
2.10.1 去重计数查询
去重计数,即Cardinality,第一步先将返回的文档中的一个指定的field进行去重,统计一共有多少条
# 去重计数查询 北京 上海 武汉 山西
POST sms-logs-index/_search
{
"aggs": {
"agg": {
"cardinality": {
"field": "province"
}
}
}
}
代码实现方式
//Java代码实现去重计数查询
@Test
public void cardinality() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定使用的聚合查询方式
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.aggregation(AggregationBuilders.cardinality("agg").field("province"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 获取返回结果
Cardinality agg = resp.getAggregations().get("agg");
long value = agg.getValue();
System.out.println(value);
}
2.10.2 范围统计
统计一定范围内出现的文档个数,比如,针对某一个Field的值在 0100,100200,200~300之间文档出现的个数分别是多少。
范围统计可以针对普通的数值,针对时间类型,针对ip类型都可以做相应的统计。
range,date_range,ip_range
数值统计
# 数值方式范围统计
# fee中 0-5,5-10,10以上,各有多少个
# from包含当前值,to不包含当前值
POST sms-logs-index/_search
{
"aggs": {
"agg": {
"range": {
"field": "fee",
"ranges": [
{
"to": 5
},
{
"from": 5,
"to": 10
},
{
"from": 10
}
]
}
}
}
}
代码实现:
// Java实现数值 范围统计
@Test
public void range() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定使用的聚合查询方式
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.aggregation(AggregationBuilders.range("agg").field("fee")
.addUnboundedTo(5)
.addRange(5,10)
.addUnboundedFrom(10));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 获取返回结果
Range agg = resp.getAggregations().get("agg");
for (Range.Bucket bucket : agg.getBuckets()) {
String key = bucket.getKeyAsString();
Object from = bucket.getFrom();
Object to = bucket.getTo();
long docCount = bucket.getDocCount();
System.out.println(String.format("key:%s,from:%s,to:%s,docCount:%s",key,from,to,docCount));
}
}
时间范围统计
# 时间方式范围统计
POST sms-logs-index/_search
{
"aggs": {
"agg": {
"date_range": {
"field": "createDate",
"format": "yyyy",
"ranges": [
{
"to": 2020
},
{
"from": 2020
}
]
}
}
}
}
代码实现参考 数值统计 即可
ip统计方式
# ip方式 范围统计
POST sms-logs-index/_search
{
"aggs": {
"agg": {
"ip_range": {
"field": "ipAddr",
"ranges": [
{
"to": "10.126.2.9"
},
{
"from": "10.126.2.9"
}
]
}
}
}
}
代码实现参考 数值统计 即可
2.10.3 统计聚合查询
他可以帮你查询指定Field的最大值,最小值,平均值,平方和等
使用:extended_stats
# 统计聚合查询
POST sms-logs-index/_search
{
"aggs": {
"agg": {
"extended_stats": {
"field": "fee"
}
}
}
}
代码实现方式
// Java实现统计聚合查询
@Test
public void extendedStats() throws IOException {
//1. 创建SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定使用的聚合查询方式
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.aggregation(AggregationBuilders.extendedStats("agg").field("fee"));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 获取返回结果
ExtendedStats agg = resp.getAggregations().get("agg");
double max = agg.getMax();
double min = agg.getMin();
System.out.println("fee的最大值为:" + max + ",最小值为:" + min);
}
其他的聚合查询方式查看官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.x/index.html
2.11 地图经纬度搜索
ES中提供了一个数据类型 geo_point,这个类型就是用来存储经纬度的。
创建一个带geo_point类型的索引,并添加测试数据
# 创建一个索引,指定一个name,locaiton
PUT map
{
"settings": {
"number_of_shards": 5,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"name":{
"type": "text"
},
"location": {
"type": "geo_point"
}
}
}
}
# 添加测试数据
PUT map/_doc/1
{
"name": "海为科技园",
"location": {
"lon": 113.657903,
"lat": 34.727474
}
}
PUT map/_doc/2
{
"name": "郑航家属院",
"location": {
"lon": 113.653232,
"lat": 34.728275
}
}
PUT map/_doc/3
{
"name": "二七区政府",
"location": {
"lon": 113.646512,
"lat": 34.73047
}
}
PUT map/_doc/4
{
"name": "二七万达",
"location": {
"lon": 113.64892,
"lat": 34.724329
}
}
PUT map/_doc/5
{
"name": "市第二人民医院地铁站",
"location": {
"lon": 113.650501,
"lat": 34.726791
}
}
2.11.1 ES的地图检索方式
语法 | 说明 |
---|---|
geo_distance | 直线距离检索方式 |
geo_bounding_box | 以两个点确定一个矩形,获取在矩形内的全部数据 |
geo_polygon | 以多个点,确定一个多边形,获取多边形内的全部数据 |
2.11.2 基于RESTful实现地图检索
geo_distance
# geo_distance
# location:确定一个点(此处为北京站)
# distance:确定半径
# distance_type:指定形状为圆形
POST map/_search
{
"query": {
"geo_distance": {
"location": {
"lon": 113.657903,
"lat": 34.727474
},
"distance": 1000,
"distance_type": "arc"
}
}
}
geo_bounding_box
# geo_bounding_box
# top_left:左上角的坐标点(二七政府)
# bottom_right:右下角的坐标点(海为科技园)
POST map/_search
{
"query": {
"geo_bounding_box": {
"location": {
"top_left": {
"lon": 113.646512,
"lat": 34.73047
},
"bottom_right": {
"lon": 113.657903,
"lat": 34.727474
}
}
}
}
}
geo_polygon
# geo_polygon
# points:指定多个点确定一个多边形(海为科技园,二七区政府,二七万达)
POST map/_search
{
"query": {
"geo_polygon": {
"location": {
"points": [
{
"lon": 113.646512,
"lat": 34.73047
},
{
"lon": 113.657903,
"lat": 34.727474
},
{
"lon": 113.64892,
"lat": 34.724329
}
]
}
}
}
}
Java实现geo_polygon
package com.qf;
import org.elasticsearch.action.search.*;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
@SpringBootTest
class SpringbootEs04ApplicationTests {
@Test
void contextLoads() {
}
//----------------------查询操作-------------------------
@Autowired
private RestHighLevelClient elasticsearchClient;
String index = "map";
// 基于Java实现geo_polygon查询
@Test
public void geoPolygon() throws IOException {
//1. SearchRequest
SearchRequest request = new SearchRequest(index);
//2. 指定检索方式
SearchSourceBuilder builder = new SearchSourceBuilder();
List<GeoPoint> points = new ArrayList<>();
points.add(new GeoPoint(34.73047,113.646512));
points.add(new GeoPoint(34.727474,113.657903));
points.add(new GeoPoint(34.724329,113.64892));
builder.query(QueryBuilders.geoPolygonQuery("location",points));
request.source(builder);
//3. 执行查询
SearchResponse resp = elasticsearchClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
for (SearchHit hit : resp.getHits().getHits()) {
System.out.println(hit.getSourceAsMap());
}
}
}