JVM

1.Java 的内存划分?

1.Java的内存划分?
程序计数器(PC,Program Counter Register)。在 JVM 规范中,每个线程都有它自己的程序计数器,并且任何时间一个线程都只有一个方法在执行,也就是所谓的当前方法。程序计数器会存储当前线程正在执行的 Java 方法的 JVM 指令地址;或者,如果是在执行本地方法,则是未指定值(undefined)。(唯一不会抛出OutOfMemoryError)
第二,Java 虚拟机栈(Java Virtual Machine Stack),早期也叫 Java 栈。每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次的 Java 方法调用。
前面谈程序计数器时,提到了当前方法;同理,在一个时间点,对应的只会有一个活动的栈帧,通常叫作当前帧,方法所在的类叫作当前类。如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,成为新的当前帧,一直到它返回结果或者执行结束。JVM 直接对 Java 栈的操作只有两个,就是对栈帧的压栈和出栈。
栈帧中存储着局部变量表、操作数(operand)栈、动态链接、方法正常退出或者异常退出的定义等。
第三,堆(Heap),它是 Java 内存管理的核心区域,用来放置 Java 对象实例,几乎所有创建的 Java 对象实例都是被直接分配在堆上。堆被所有的线程共享,在虚拟机启动时,我们指定的“Xmx”之类参数就是用来指定最大堆空间等指标。
( 编译器通过逃逸分析,确定对象是在栈上分配还是在堆上分配)
理所当然,堆也是垃圾收集器重点照顾的区域,所以堆内空间还会被不同的垃圾收集器进行进一步的细分,最有名的就是新生代、老年代的划分。
第四,方法区(Method Area)。这也是所有线程共享的一块内存区域,用于存储所谓的元(Meta)数据,例如类结构信息,以及对应的运行时常量池、字段、方法代码等。
由于早期的 Hotspot JVM 实现,很多人习惯于将方法区称为永久代(Permanent Generation)。Oracle JDK 8 中将永久代移除,同时增加了元数据区(Metaspace)。
第五,运行时常量池(Run-Time Constant Pool),这是方法区的一部分。如果仔细分析过反编译的类文件结构,你能看到版本号、字段、方法、超类、接口等各种信息,还有一项信息就是常量池。Java 的常量池可以存放各种常量信息,不管是编译期生成的各种字面量,还是需要在运行时决定的符号引用,所以它比一般语言的符号表存储的信息更加宽泛。
第六,本地方法栈(Native Method Stack)。它和 Java 虚拟机栈是非常相似的,支持对本地方法的调用,也是每个线程都会创建一个。在 Oracle Hotspot JVM 中,本地方法栈和 Java 虚拟机栈是在同一块儿区域,这完全取决于技术实现的决定,并未在规范中强制。

栈帧

就是线程每调用执行一个方法都会将该方法分装为一个栈帧进行入栈操作

堆内存划分

堆的垃圾回收方式

Java 中的堆也是 GC 收集垃圾的主要区域。GC 分为两种:Minor GC、Full GC ( 或称为 Major GC )。

Minor GC

Minor GC 是发生在新生代中的垃圾收集动作,所采用的是复制算法

Full GC

Full GC 是发生在老年代的垃圾收集动作,所采用的是标记-清除算法

每一次的Full GC 都会伴随着一次 Minor GC

如何确定某个对象是“垃圾”?

引用计数法

在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。不失一般性,如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了。这种方式成为引用计数法。

这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法)。

可达性分析

为了解决这个问题,在Java中采取了可达性分析法。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。

3.如何判断一个对象应该被回收?

1)在Java中采取了 可达性分析法
通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。
2)gcroots对象:虚拟机栈中引用的对象、方法区类静态属性引用的对象、方法区常量池引用的对象、本地方法栈JNI引用的对象

2、典型的垃圾收集算法?

在确定了哪些垃圾可以被回收后,垃圾收集器要做的事情就是开始进行垃圾回收,但是这里面涉及到一个问题是:如何高效地进行垃圾回收。由于Java虚拟机规范并没有对如何实现垃圾收集器做出明确的规定,因此各个厂商的虚拟机可以采用不同的方式来实现垃圾收集器,所以在此只讨论几种常见的垃圾收集算法的核心思想。

1.Mark-Sweep(标记-清除)算法

这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:

img

从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

3.Mark-Compact(标记-整理)算法(压缩法)

为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

img

4.Generational Collection(分代收集)算法

分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

目前大部分垃圾收集器对于新生代都采取复制算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。

典型的垃圾收集器

垃圾收集算法是 内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,用户可以根据自己的需求组合出各个年代使用的收集器。

1.Serial/Serial Old收集器 是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。****它的优点是实现简单高效,但是缺点是会给用户带来停顿。

2.ParNew收集器 是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

3.Parallel Scavenge收集器 是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

4.Parallel Old收集器 是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

5.CMS(Concurrent Mark Sweep)收集器 是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

6.G1收集器 是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型

4.GC触发的条件?

Minor GC触发条件:

Eden区满,即触发Minor GC

Full GC触发条件

Full GC:也是major GC ,会发生 老年代回收和新生代回收

  1. 调用System.gc(),建议执行
  2. 老年代空间不足
  3. 方法区(永久代,元空间,metaspace)空间不足
  4. 通过Minor GC进入老年代对象大于老年代的大小
  5. 当Survivor From 中的对象存活了15次Minor GC,那么它将被放入老年代(OLD),如果本次升入老年代的对象大小,高于平均值,也会触发full GC

一般来说,每次的full ,一定会伴随着 minor GC

5.可以作为GCRoots 的对象有哪些?

虚拟机栈中引用的对象
方法区中类静态属性引用的对象
方法区中常量引用的对象
本地方法栈中引用的对象

7类加载器

启动类加载器(Bootstrap ClassLoader):前面已经大致介绍过了,这个类加载器负责将存放在 <JRE_HOME>\lib 目录中的,或者被 -Xbootclasspath 参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如 rt.jar,名字不符合的类库即使放在 lib 目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被 Java 程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给启动类加载器,直接使用 null 代替即可。
扩展类加载器(Extension ClassLoader):这个类加载器是由 ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的。它负责将 <JAVA_HOME>/lib/ext 或者被 java.ext.dir 系统变量所指定路径中的所有类库加载到内存中,开发者可以直接使用扩展类加载器。
应用程序类加载器(Application ClassLoader):这个类加载器是由 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的。由于这个类加载器是 ClassLoader 中的 getSystemClassLoader() 方法的返回值,因此一般称为系统类加载器。它负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

7.双亲委派模型?

双亲委派模型工作过程是:
如果一个类加载器收到类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器完成。每个类加载器都是如此,只有当父加载器在自己的搜索范围内找不到指定的类时(即ClassNotFoundException),子加载器才会尝试自己去加载。

8.为什么需要双亲委派模型?

防止内存中出现多份同样的字节码,防止 重名重包的类加载两次

9.怎么打破双亲委派模型?

打破双亲委派机制则不仅要继承ClassLoader类,还要重写loadClass和findClass方法。

10.导致Full GC一般有哪些情况?

  1. System.gc()方法的调用

  2. 老年代不足

  3. 方法区(永久代)不足

  4. concurrent mode failure

concurrent mode failure是在执行CMS GC的过程中同时有对象要放入老年代,而此时老年代空间不足造成的(有时候“空间不足”是CMS GC时当前的浮动垃圾过多导致暂时性的空间不足触发Full GC)。

  1. promotion failed

minor gc时年轻代的存活区空间不足而晋升老年代,老年代又空间不足而触发full gc。

相关参数: -XX:SurvivorRatio=8,设置eden和survivor的比例,默认8:1。

相关参数: -XX:MaxTenuringThreshold=15,最多经过多少次minor gc后存活的年轻代对象会晋升老年代,默认15。

  1. 统计得到的Minor GC晋升到旧生代的平均大小大于老年代的剩余空间

当准备要触发一次young GC时,如果发现统计数据说之前young GC的平均晋升大小比目前old gen剩余的空间大,则不会触发young GC而是转为触发full GC(因为HotSpot VM的GC里,除了CMS的concurrent collection之外,其它能收集old gen的GC都会同时收集整个GC堆,包括young gen,所以不需要事先触发一次单独的young GC)。

12.JVM性能调优?

1、设定堆内存大小

-Xmx:堆内存最大限制。

-Xsx:设置堆内存 最小限制

2、设定新生代大小。 新生代不宜太小,否则会有大量对象涌入老年代

-XX:NewSize:新生代大小

-XX:NewRatio 新生代和老生代占比

-XX:SurvivorRatio:伊甸园空间和幸存者空间的占比

3、设定垃圾回收器 年轻代用 -XX:+UseParNewGC 年老代用-XX:+UseConcMarkSweepGC

13.Java 内存模型?

Java内存模型定义了多线程之间共享变量的可见性以及如何在需要的时候对共享变量进行同步。JMM 内部的实现通常是依赖于所谓的内存屏障,通过禁止某些重排序的方式,提供内存可见性保证,也就是实现了各种 happen-before 规则。

与JVM 内存模型不同。

Java内存模型即Java Memory Model,简称JMM。JMM定义了Java 虚拟机(JVM)在计算机内存(RAM)中的工作方式。JVM是整个计算机虚拟模型,所以JMM是隶属于JVM的。

Java内存模型定义了多线程之间共享变量的可见性以及如何在需要的时候对共享变量进行同步。

Java线程之间的通信采用的是过共享内存模型,这里提到的共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。

14.Java 中堆和栈有什么区别?

  • 最主要的区别就是栈内存用来存储局部变量和方法调用。

而堆内存用来存储Java中的对象。无论是成员变量,还是类变量,它们指向的对象都存储在堆内存中。

  • 独有还是共享

栈内存归属于单个线程,每个线程都会有一个栈内存,其存储的变量只能在其所属线程中可见,即栈内存可以理解成线程的私有内存。

而堆内存中的对象对所有线程可见。堆内存中的对象可以被所有线程访问。

  • 异常错误

如果栈内存没有可用的空间存储方法调用和局部变量,JVM会抛出java.lang.StackOverFlowError。 方法循环调用最容易出现

而如果是堆内存没有可用的空间存储生成的对象,JVM会抛出java.lang.OutOfMemoryError。

  • 空间大小

栈的内存要远远小于堆内存,如果你使用递归的话,那么你的栈很快就会充满。如果递归没有及时跳出,很可能发生StackOverFlowError问题。

18.类加载器有哪些?

类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构。类的加载的最终产品是位于堆区中的Class对象,Class对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口。

19.Java对象创建过程?

1.JVM遇到一条新建对象的指令时首先去检查这个指令的参数是否能在常量池中定义到一个类的符号引用。然后加载这个类(类加载过程在后边讲)
2.为对象分配内存。一种办法“指针碰撞”、一种办法“空闲列表”,最终常用的办法“本地线程缓冲分配(TLAB)”
3.将除对象头外的对象内存空间初始化为0
4.对对象头进行必要设置
5.调用构造方法

20.Java中类的生命周期使什么?

1、加载,查找并加载类的二进制数据,在Java堆中也创建一个java.lang.Class类的对象
2、连接,连接又包含三块内容:验证、准备、初始化。 1)验证,文件格式、元数据、字节码、符号引用验证; 2)准备,为类的静态变量分配内存,并将其初始化为默认值; 3)解析,把类中的符号引用转换为直接引用
3、初始化,为类的静态变量赋予正确的初始值
4、使用,new出对象程序中使用
5、卸载,执行垃圾回收

22.JVM调优命令?

Sun JDK监控和故障处理命令有jps jstat jmap jhat jstack jinfo
1、jps,JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程。
2、jstat,JVM statistics Monitoring是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。
3、jmap,JVM Memory Map命令用于生成heap dump文件
4、jhat,JVM Heap Analysis Tool命令是与jmap搭配使用,用来分析jmap生成的dump,jhat内置了一个微型的HTTP/HTML服务器,生成dump的分析结果后,可以在浏览器中查看
5、jstack,用于生成java虚拟机当前时刻的线程快照。
6、jinfo,JVM Configuration info 这个命令作用是实时查看和调整虚拟机运行参数。

23.JVM调优工具?

常用调优工具分为两类,jdk自带监控工具:jconsole和jvisualvm,第三方有:MAT(Memory AnalyzerTool)、GChisto。
1、jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控
2、jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。
3、MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗
4、GChisto,一款专业分析gc日志的工具

24.描述一下JVM加载class文件的原理机制?

JVM中类的装载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件

25.GC是什么?为什么要有GC?

GC是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会
导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,
Java语言没有提供释放已分配内存的显示操作方法。 

26.垃圾回收器的基本原理是什么?

对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的"。当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。

27.Java 中的引用类型有几种?

1、强引用
  如果一个对象具有强引用,它就不会被垃圾回收器回收。即使当前内存空间不足,JVM也不会回收它,而是抛出 OutOfMemoryError 错误,使程序异常终止。如果想中断强引用和某个对象之间的关联,可以显式地将引用赋值为null,这样一来的话,JVM在合适的时间就会回收该对象。
2、软引用
  在使用软引用时,如果内存的空间足够,软引用就能继续被使用,而不会被垃圾回收器回收;只有在内存空间不足时,软引用才会被垃圾回收器回收
3、弱引用
  具有弱引用的对象拥有的生命周期更短暂。因为当 JVM 进行垃圾回收,一旦发现弱引用对象,无论当前内存空间是否充足,都会将弱引用回收。不过由于垃圾回收器是一个优先级较低的线程,所以并不一定能迅速发现弱引用对象
4、虚引用
  顾名思义,就是形同虚设,如果一个对象仅持有虚引用,那么它相当于没有引用,在任何时候都可能被垃圾回收器回收。
  虚引用必须和引用队列关联使用,当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动
posted @ 2022-07-20 23:01  qtyanan  阅读(50)  评论(0编辑  收藏  举报