bzoj 1196: [HNOI2006]公路修建问题

Description

OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。 OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。 OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率, OIER Association希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIER Association也不希望为一条公路花费的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。

Input

第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。 N和k如前所述,m表示有m对景点之间可以修公路。以下的m-1行,每一行有4个正整数a,b,c1,c2 (1≤a,b≤n,a≠b,1≤c2≤c1≤30000)表示在景点a与b 之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。

Output

一个数据,表示花费最大的公路的花费。

Sample Input

10 4 20
3 9 6 3
1 3 4 1
5 3 10 2
8 9 8 7
6 8 8 3
7 1 3 2
4 9 9 5
10 8 9 1
2 6 9 1
6 7 9 8
2 6 2 1
3 8 9 5
3 2 9 6
1 6 10 3
5 6 3 1
2 7 6 1
7 8 6 2
10 9 2 1
7 1 10 2

Sample Output

5

HINT

 

Source

该题有两个约束条件,我们考虑通过限制一个再来求第二个条件的最优

最大值最小考虑二分答案,二分一个最大值,然后构造最优的方案判断是否满足,通过二分可以把权值限制住,接下来只考虑尽量满足k条

只考虑<=mid的边(限制住了最大值的条件),优先考虑修1级公路,即把一级公路费用<=mid的边用来构造生成树(在已经满足最大值<=mid的情况下,尽量满足k条公路的条件)

考虑完一级公路后再来考虑<=mid的二级公路,判断是否连通即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=200000;
int gi(){
	int x=0;
	char ch=getchar();
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
	return x;
}
struct data{
	int x,y,val1,val2;
}edge[N];
int n,m,k,fa[N],used[N];
int find(int x) {
    if(x!=fa[x]) {
        fa[x]=find(fa[x]);
    }
    return fa[x];
}
bool check(int mid){
	int cnt=0;for(int i=1;i<=n;i++) fa[i]=i;
	for(int i=1;i<=m;i++){
		if(edge[i].val1<=mid){
			int x=find(edge[i].x),y=find(edge[i].y);
			if(x!=y) fa[x]=y,cnt++,used[i]=mid;
		}
	}
	if(cnt<k) return 0;
	for(int i=1;i<=m;i++){
		if(edge[i].val2<=mid&&used[i]!=mid){
			int x=find(edge[i].x),y=find(edge[i].y);
			if(x!=y) fa[x]=y,cnt++,used[i]=mid;
		}
	}
	if(cnt==n-1) return 1;
	return 0; 
}
int main(){
	n=gi(),k=gi(),m=gi();
	for(int i=1;i<=m-1;i++){
		edge[i].x=gi(),edge[i].y=gi(),edge[i].val1=gi(),edge[i].val2=gi();
	}
	int l=1,r=30000,ans=1;
	while(l<=r){
		int mid=(l+r)>>1;
		if(check(mid)) ans=mid,r=mid-1;
		else l=mid+1;
	}
	printf("%d\n",ans);
}

  

posted @ 2017-05-11 13:15  qt666  阅读(194)  评论(0编辑  收藏  举报