实验五:全连接神经网络手写数字识别实验

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。

【实验内容】

1.使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

【实验报告要求】

修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
修改神经网络的学习率,观察对训练和检测效果的影响;
修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

【实验代码及结果截图】

#导入包
import torch
import torch.nn.functional as functional
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms


BATCH_SIZE = 64
MNIST_PATH = "../../../Data/MNIST"#定义路径

#softmax归一化
transform = transforms.Compose([
    transforms.ToTensor(),
    #                     均值      标准差
    transforms.Normalize((0.1307,), (0.3081,))
])

#定义数据,并下载数据集
train_dataset = datasets.MNIST(root=MNIST_PATH,
                               train=True,
                               download=True,
                               transform=transform)
test_dataset = datasets.MNIST(root=MNIST_PATH,
                              train=False,
                              download=True,
                              transform=transform)
#载入数据集
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=BATCH_SIZE)
test_loader = DataLoader(test_dataset,shuffle=False,batch_size=BATCH_SIZE)


#全连接神经网络
class FullyNeuralNetwork(torch.nn.Module):
    def __init__(self):
        super().__init__()
        # 建立5层的全连接层
        self.layer_1 = torch.nn.Linear(784, 512)
        self.layer_2 = torch.nn.Linear(512, 256)
        self.layer_3 = torch.nn.Linear(256, 128)
        self.layer_4 = torch.nn.Linear(128, 64)
        self.layer_5 = torch.nn.Linear(64, 10)
    #forward函数
    def forward(self, data):
        x = data.view(-1, 784)
        x =  functional.relu(self.layer_1(x))
        x = functional.relu(self.layer_2(x))#使用relu函数作为激活函数
        x = functional.relu(self.layer_4(x))
        x = self.layer_5(x)
        return x
#训练数据
def train(epoch, model, criterion, optimizer):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 100 == 0:
            print('[%d, %5d] loss: %.3f' % (epoch, batch_idx, running_loss / 100))
            running_loss = 0.0
#测试数据
def test(model):
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test_loader:
            outputs = model(images)
            _, predicated = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicated == labels).sum().item()
    print("Accuracy on test set: %d %%" % (100 * correct / total))


if __name__ == "__main__":
    model = FullyNeuralNetwork()
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.5)
    for epoch in range(5):
        train(epoch, model, criterion, optimizer)
        test(model)

输出结果如下:

修改学习率为0.01,得出的结果如下所示:

posted @ 2022-11-28 00:46  qsl0000  阅读(35)  评论(0编辑  收藏  举报