Python中任务队列-芹菜celery的使用

一、关于celery

芹菜celery是一个python实现的异步任务队列,可以用于爬虫、web后台查询、计算等等。通过任务队列,当一个任务来临时不再傻傻等待。

他的架构如下:

celery_architecture

  • Broker

我们的生产者创建任务后会进入celery的任务调度队列中间件Broker,Broker通过调度规则将消息(任务)调度消息队列,Broker依赖第三方队列消息代理如rabbitmqredis等。

  • Worker

广大劳动者,盯着消息队列,当队列中有消息时把它拿过来给处理了。

  • Backend

用于结果存储经worker处理的结果,比如常用的数据库等。


使用celery

在本文中咱们使用rabbitmq(celery推荐)作为消息代理中间件。

我们创建的celery目录如下

learn_celery/
...celery_env/
...celery.py
...my_task1.py
...my_task2.py
...task1_run.py
...task2_run.py
1. 创建虚拟环境并安装celery、flower(web监控),这里不做赘述。
2.安装咱们的消息队列中间件rabbitmq

这里以docker的方式运行并配置,指定主机名为rabbit(rabbitmq是以主机名来访问的,所以这是必须的),容器名称为celery_rabbitmq

docker run -d -p 5672:5672 -h rabbit --name celery_rabbitmq rabbitmq

添加用于celery访问的用户,以及配置configurewriteread权限,在下面我们配置rabbit_user拥有所有配置、写入和读取权限。

docker exec -it celery_rabbitmq rabbitmqctl add_user rabbit_user rabbit_pass
docker exec -it celery_rabbitmq rabbitmqctl add_vhost rabbit_vhost
docker exec -it celery_rabbitmq rabbitmqctl set_user_tags rabbit_user celery
docker exec -it celery_rabbitmq rabbitmqctl  set_permissions -p rabbit_vhost rabbit_user ".*" ".*" ".*"
3.创建celery应用
#celery.py
from celery import Celery

broker_rabbitmq="amqp://rabbit_user:rabbit_pass@i-k9pwet2d/rabbit_vhost"
app=Celery("learn_celery",broker=broker_rabbitmq,backend="rpc://",include=["learn_celery.my_task2","learn_celery.my_task2"])

我们通过创建app来实例化Celery,项目包的名称为learn_celery,通过broker_rabbitmq来连接rabbitmq,rabbitmq的amqp协议格式为

amqp://userid:password@hostname:port/virtual_host

由于我们是在docker中启动的rabbitmq,所以我们的hostname应该为宿主机的hostname。

指定后端通过rpc回传数据,include加载带worker处理的任务learn_celery.my_task1learn_celery.my_task2

4.创建两个任务(消息)
#my_task1.py
from .celery import app
import time

@app.task
def args_add1(x,y):
    print("start task no.1 now!")
    time.sleep(10)
    print("task no.1 end!")
    return x+y

#my_task12.py
from .celery import app
import time

@app.task
def args_add2(x,y):
    print("start task no.2 now!")
    time.sleep(20)
    print("task no.2 end!")
    return x+y

在这里我们导入了celery中的app,并用它来装饰我们的方法args_add,在args_add中模拟任务处理时间分别为10s、20s然后返回结果。

5.发送任务给celery
#tasks1_run.py
from .my_task1 import args_add1
import time

reslut=args_add1.delay(11,22)
print("task over?{}".format(reslut.ready()))
print("task reslut:{}".format(reslut.result))
time.sleep(15)
print("task over?{}".format(reslut.ready()))
print("task reslut:{}".format(reslut.result))

#tasks2_run.py
from .my_task2 import args_add2
import time

reslut=args_add2.delay(33,44)
print("task over?{}".format(reslut.ready()))
print("task reslut:{}".format(reslut.result))
time.sleep(25)
print("task over?{}".format(reslut.ready()))
print("task reslut:{}".format(reslut.result))

关于任务的delay,官方文档(参考)是这样描述的,我把它理解为发送任务给celery或者celery调用待进来的任务。

image-20210707162220566

reslut.ready() 返回任务执行是否执行完成True or False

reslut.result 返回任务执行结果

我们在任务进入celery和结束分别检查一次。


二、看看结果

1.启动worker

进入learn_celery的父目录。启动learn_celery的这个应用worker,并指定并发数为10个

celery -A learn_celery worker --loglevel=info --concurrency=10

若celery连接rabbitmq正常,我们可以看到如下的info

image-20210707112018241

2.执行任务

为了便于观察,我们另外开启一个窗口2,到learn_celery父目录运行task1_run模块

python -m learn_celery.tasks1_run

image-20210707164856051

开启窗口3,到learn_celery父目录运行task2_run模块

python -m learn_celery.tasks2_run

image-20210707165012326

可以看到经过各自任务的等待时间后,两个任务都顺利执行结束,并得到结果,接下来我们到worker上看一下info

由于celery的并发性,收到任务马上被调入执行,任务1耗时10s结果为33,任务2耗时20s结果为77


三、使用Flower监控celery

1.启动flower
celery -A learn_celery flower
2. 查看web监控 http://ip:5555

Tasks中可以查看到当前任务队列的状态、参数、接收和启动、执行时间。
image-20210707170905888
Dashborad中查看当前worker节点的相关信息
image-20210707171023610


文章有不足的地方欢迎指出。

欢迎收藏、点赞、提问。关注顶级饮水机管理员,除了管烧热水,有时还做点别的。


NEXT

  • celery的深入了解

  • celery在django中的使用

posted @   justtest1  阅读(983)  评论(1编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
· Manus的开源复刻OpenManus初探
点击右上角即可分享
微信分享提示