Python数据分析入门(十四):数据分析中常用图

折线图:

折线图用于显示数据在一个连续的时间间隔或者时间跨度上的变化,它的特点是反映事物随时间或有序类别而变化的趋势。示例图如下:

 

 

折线图应用场景:

  • 折线图适合X轴是一个连续递增或递减的,对于没有规律的,则不适合使用折线图,建议使用柱状图。
  • 如果折线图条数过多,则不应该都绘制在一个图上。

柱状图:

典型的柱状图(又名条形图),使用垂直或水平的柱子显示类别之间的数值比较。其中一个轴表示需要对比的分类,另一个轴代表相应的数值。

柱状图有别于直方图,柱状图无法显示数据在一个区间内的连续变化趋势。柱状图描述的是分类数据,回答的是每一个分类中“有多少?”这个问题。 示例图如下:

 

柱状图应用场景:

  • 适用于分类数据对比。

  • 垂直条形图最多不超过12个分类(也就是12个柱形),横向条形图最多不超过30个分类。如果垂直条形图的分类名太长,那么建议换成横向条形图。



  • 柱状图不适合表示趋势,如果想要表示趋势,应该使用折线图。

直方图:

直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的条纹表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。 直方图是数值数据分布的精确图形表示。为了构建直方图,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。这些值通常被指定为连续的,不重叠的变量间隔。间隔必须相邻,并且通常是(但不是必须的)相等的大小。

 

直方图的应用场景:

  • 显示各组数据数量分布的情况。
  • 用于观察异常或孤立数据。
  • 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。

散点图:

散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。

通过观察散点图上数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。数据的相关关系主要分为:正相关(两个变量值同时增长)、负相关(一个变量值增加另一个变量值下降)、不相关、线性相关、指数相关等,表现在散点图上的大致分布如下图所示。那些离点集群较远的点我们称为离群点或者异常点。

 

 

散点图的应用场景:

  • 观察数据集的分布情况。
  • 通过分析规律,根据样本数据特征计算出回归方程。

饼状图:

饼状图通常用来描述量、频率和百分比之间的关系。在饼图中,每个扇区的弧长大小为其所表示的数量的比例。

 

 

饼状图的应用场景:

  • 展示多个分类的占比情况,分类数量建议不超过9个。
  • 对于一些占比值非常接近的,不建议使用饼状图,可以使用柱状图。

箱线图:

箱线图(Box-plot)又称为盒须图、盒式图或箱型图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。箱线图的绘制方法是:先找出一组数据的上限值、下限值、中位数(Q2)和下四分位数(Q1)以及上四分位数(Q3);然后,连接两个四分位数画出箱子;再将最大值和最小值与箱子相连接,中位数在箱子中间。

 

 

四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。与中位数的计算方法类似,根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。与中位数不同的是,四分位数位置的确定方法有几种,每种方法得到的结果会有一定差异,但差异不会很大。

上限的计算规则是: IQR=Q3-Q1 上限=Q3+1.5IQR 下限=Q1-1.5IQR

箱线图的应用场景:

    • 直观明了地识别数据中的异常值。
    • 利用箱线图判断数据的偏态。
    • 利用箱线图比较几批数据的形状。
    • 箱线图适合比较多组数据,如果知识要看一组数据的分布情况,建议使用直方图。
posted @ 2021-04-10 14:51  松鼠爱吃饼干  阅读(753)  评论(0编辑  收藏  举报
Title