Python数据分析入门(七):Pandas层级索引
下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引。
示例代码:
import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(12),index=[ ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd'], [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] ]) print(ser_obj)
运行结果:
a 0 0.099174 1 -0.310414 2 -0.558047 b 0 1.742445 1 1.152924 2 -0.725332 c 0 -0.150638 1 0.251660 2 0.063387 d 0 1.080605 1 0.567547 2 -0.154148 dtype: float64
MultiIndex索引对象
-
打印这个Series的索引类型,显示是MultiIndex
-
直接将索引打印出来,可以看到有lavels,和labels两个信息。levels表示两个层级中分别有那些标签,labels是每个位置分别是什么标签。
示例代码:
print(type(ser_obj.index)) print(ser_obj.index)
运行结果:
<class 'pandas.indexes.multi.MultiIndex'> MultiIndex(levels=[['a', 'b', 'c', 'd'], [0, 1, 2]], labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]])
选取子集
-
根据索引获取数据。因为现在有两层索引,当通过外层索引获取数据的时候,可以直接利用外层索引的标签来获取。
-
当要通过内层索引获取数据的时候,在list中传入两个元素,前者是表示要选取的外层索引,后者表示要选取的内层索引。
1. 外层选取:
ser_obj['outer_label']
示例代码:
# 外层选取 print(ser_obj['c'])
运行结果:
0 -1.362096
1 1.558091
2 -0.452313
dtype: float64
2. 内层选取:
ser_obj[:, 'inner_label']
示例代码:
# 内层选取 print(ser_obj[:, 2])
运行结果:
a 0.826662 b 0.015426 c -0.452313 d -0.051063 dtype: float64
常用于分组操作、透视表的生成等
交换分层顺序
swaplevel()
.swaplevel( )交换内层与外层索引。
示例代码:
print(ser_obj.swaplevel())
运行结果:
0 a 0.099174 1 a -0.310414 2 a -0.558047 0 b 1.742445 1 b 1.152924 2 b -0.725332 0 c -0.150638 1 c 0.251660 2 c 0.063387 0 d 1.080605 1 d 0.567547 2 d -0.154148 dtype: float64
交换并排序分层
sortlevel()
.sortlevel( )先对外层索引进行排序,再对内层索引进行排序,默认是升序。
示例代码:
# 交换并排序分层 print(ser_obj.swaplevel().sortlevel())
运行结果:
0 a 0.099174 b 1.742445 c -0.150638 d 1.080605 1 a -0.310414 b 1.152924 c 0.251660 d 0.567547 2 a -0.558047 b -0.725332 c 0.063387 d -0.154148 dtype: float64