chatgpt使用记录
网址:http://chat.yangxiwl.cn/chatbotai/1002?channel=bdtoufangChatztHD3
写一个java程序,要求将kafka的数据消费批量插入的clickhouse数据库
你可以使用Kafka的Java客户端库和ClickHouse的Java驱动来实现将Kafka数据消费并批量插入到ClickHouse数据库中的功能。以下是一个简单的示例程序:
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.util.*; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse连接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消费并插入数据 try (ClickHouseConnection connection = dataSource.getConnection(); ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES (?, ?)")) { while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假设数据格式为逗号分隔的两列 stmt.setString(1, data[0]); stmt.setString(2, data[1]); stmt.addBatch(); } stmt.executeBatch(); } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } }
下面是一个示例程序,它将Kafka的数据按照每100条记录进行批量插入到ClickHouse数据库,并在每个批次结束后提交事务
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.time.Duration; import java.util.ArrayList; import java.util.List; import java.util.Properties; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 100); // 每次最多拉取100条记录 // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse连接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消费并插入数据 try (ClickHouseConnection connection = dataSource.getConnection()) { List<String> batch = new ArrayList<>(); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假设数据格式为逗号分隔的两列 String row = String.format("('%s', '%s')", data[0], data[1]); batch.add(row); } if (batch.size() >= 100) { insertBatch(connection, batch); batch.clear(); } } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } private static void insertBatch(ClickHouseConnection connection, List<String> batch) throws SQLException { try (ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES " + String.join(",", batch))) { stmt.execute(); } } }
如何实现批量提交的同时避免重复插入
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.time.Duration; import java.util.*; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 100); // 每次最多拉取100条记录 // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse连接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消费并插入数据 try (ClickHouseConnection connection = dataSource.getConnection()) { List<String> batch = new ArrayList<>(); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假设数据格式为逗号分隔的两列 String row = String.format("('%s', '%s')", data[0], data[1]); batch.add(row); } if (batch.size() >= 100) { insertBatch(connection, batch); batch.clear(); } } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } private static void insertBatch(ClickHouseConnection connection, List<String> batch) throws SQLException { try (ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES " + String.join(",", batch))) { stmt.execute(); } catch (SQLException e) { // 处理重复插入的异常 if (e.getMessage().contains("Code: 409")) { // 重复插入数据,可以忽略或者进行其他处理 } else { throw e; } } } }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
2022-10-10 Flink使用异常处理
2022-10-10 使用log4j2的jar包报错:ERROR StatusLogger Unrecognized conversion specifier [d]
2022-10-10 Eclipse将Maven项目打成jar包以及java用命令运行jar包指定类下的main方法