摘要:
在2005年CVPR上,来自法国的研究人员NavneetDalal和BillTriggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的... 阅读全文
摘要:
支持向量机SVM是从线性可分情况下的最优分类面提出的。所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小。推广到高维空间,最优分类线就成为最优分类面。 支持向... 阅读全文
摘要:
梯度直方图特征(HOG)是一种对图像局部重叠区域的密集型描述符,它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的... 阅读全文