IEEEXtreme Practice Community Xtreme9.0 - Dictionary Strings
Dictionary Strings
题目连接:
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/dictionary-strings
Description
Gopal is preparing for a competitive exam and he has to prepare many topics for it. To remember the concepts better he identified a set of words from each topic. He prepared dictionaries for each of these topics with the set of identified words so that he can refer to them easily.
While recollecting the topics Gopal sometimes could not remember to which dictionary a certain word belongs. After all the hard work, Gopal didn’t want to lose marks due to this confusion. So he requested his friend, Govind, to help him identify a way to check if a word belongs to a dictionary.
Govind, being a very good friend of Gopal, wants to help him do better in the exam. So, after some thought, he finally came up with a solution.
For each dictionary, a string is chosen from which all the words can be made by selecting a subset of the characters from the string and rearranging them. (It is not necessary that the characters are consecutive and/or in the same order as in the string). They called this string a Dictionary String. When confused about to which dictionary a word belongs, Gopal can check if the word can be extracted from the Dictionary String for that dictionary.
To qualify as a Dictionary String, all the letters needed to explicitly form each word of the dictionary must be present in the string. You cannot reuse letters. Thus, the string aab is not a Dictionary String for a dictionary containing the word aaa since this word needs 3 a's whereas the candidate Dictionary String has only two a's.
To help Gopal memorize the Dictionary Strings better, Govind inserted extra characters in some of the Dictionary Strings that appeared harder to memorize. To distinguish those strings from others he calls a string without any extra characters, a Perfect Dictionary String.
Govind would like your help in verifying his program. For a set of words in a dictionary, you should indicate whether a string is a perfect dictionary string and/or a dictionary string. If a word is not a dictionary string, he would like you to tell him the minimum number of characters needed to convert the string to a dictionary string.
Notes:
Some of the test cases are very large, and may require you to speed up input handling in some languages.
In C++, for example, you can include the following line as the first line in your main function to speed up the reading from input:
std::ios_base::sync_with_stdio (false);
And in Java, you can use a BufferedReader to greatly speed up reading from input, e.g.:
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
// Read next line of input which contains an integer:
int T = Integer.valueOf(reader.readLine());
Input
Input begins with a single integer T, 1 <= T <= 100, which denotes number of test cases.
Each test case begins with a line, which contains 2 space-separated integers D and S. D represents the number of words in a dictionary, and S represents the number of potential dictionary strings to be checked. Note that 1 <= D, S <= 100.
Next follows D lines, each containing a word in the dictionary.
The remaining S lines in the test case each contain a potential dictionary string.
Notes: The words in the dictionary and the potential dictionary strings will consist of only lower-case letters. The lengths of these strings are greater than or equal to one character and less than or equal to 40,000 characters.
Output
For each of the S potential dictionary strings, you should output a line with two values separated by a space in the following format:
A1 A2
Where
A1 is either Yes or No denoting if a string is a Dictionary String or not.
If A1 is No, then A2 is the minimum number of characters needed to make the string a Dictionary String. If A1 is Yes, then A2 is Yes if the string is a Perfect Dictionary String, and No otherwise.
Sample Input
1
5 3
ant
top
open
apple
lean
anteplop
antelope
penleantopan
Sample Output
Yes Yes
No 1
Yes No
Hint
For the sample input, there is only one test case with 5 words in it and 3 strings to be checked.
anteplop: contains all the words from the dictionary and no extra characters. So it is both a Dictionary String and a Perfect Dictionary String. Hence, the output is Yes Yes.
antelope: the words “apple” cannot be made from this string. So it is not a Dictionary String and is missing 1 character (‘p’) to become a dictionary string. Hence the output No 1.
penleantopan: all the words of the dictionary can be made from this string but it also contains extra characters that are not required to build the words of the dictionary. So it is a Dictionary String but not a Perfect Dictionary String.
题意
给你d个字符串,然后给再你s个字典串字符串。
你需要对每一个字典串进行判断:(位置无关,可以重新排序)
是否d个字符串都是这个字典串的子串。
如果是,那么问你这个字典串是否所有字符都被用过。
如果不是,那么最少添加多少个字符,能够使得d个字符串都是字典串的子串。
题解
首先我们预处理d个字符串的每个字符出现的最高次数。
然后对于每一个s字符串,如果某个字符小于最高次数,那么显然是不合法的。
如果等于,那么就是YES
如果大于,那么显然不是每一个字符都被用过。
代码
#include<bits/stdc++.h>
using namespace std;
int a[26];
int b[26];
void init()
{
memset(a,0,sizeof(a));
}
void solve(){
int d,p;cin>>d>>p;
for(int i=0;i<d;i++){
string s;cin>>s;
memset(b,0,sizeof(b));
for(int j=0;j<s.size();j++)
b[s[j]-'a']++,
a[s[j]-'a']=max(a[s[j]-'a'],b[s[j]-'a']);
}
for(int i=0;i<p;i++)
{
string s;cin>>s;
memset(b,0,sizeof(b));
int flag=0,ans1=0,ans2=0;
for(int j=0;j<s.size();j++)
b[s[j]-'a']++;
for(int j=0;j<26;j++){
if(b[j]<a[j])
{
flag=-1;
ans1+=a[j]-b[j];
}
if(flag!=-1&&b[j]>a[j])
{
flag=1;
ans2+=b[j]-a[j];
}
}
if(flag==-1)
cout<<"No"<<" "<<ans1<<endl;
else if(flag==0)
cout<<"Yes Yes"<<endl;
else
cout<<"Yes No"<<endl;
}
}
int main()
{
std::ios_base::sync_with_stdio (false);
int t;cin>>t;
while(t--)
{
init();
solve();
}
return 0;
}