HDU 5908 Abelian Period 暴力
Abelian Period
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5908
Description
Let S be a number string, and occ(S,x) means the times that number x occurs in S.
i.e. S=(1,2,2,1,3),occ(S,1)=2,occ(S,2)=2,occ(S,3)=1.
String u,w are matched if for each number i, occ(u,i)=occ(w,i) always holds.
i.e. (1,2,2,1,3)≈(1,3,2,1,2).
Let S be a string. An integer k is a full Abelian period of S if S can be partitioned into several continous substrings of length k, and all of these substrings are matched with each other.
Now given a string S, please find all of the numbers k that k is a full Abelian period of S.
Input
The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.
In each test case, the first line of the input contains an integer n(n≤100000), denoting the length of the string.
The second line of the input contains n integers S1,S2,S3,...,Sn(1≤Si≤n), denoting the elements of the string.
Output
For each test case, print a line with several integers, denoting all of the number k. You should print them in increasing order.
Sample Input
2
6
5 4 4 4 5 4
8
6 5 6 5 6 5 5 6
Sample Output
3 6
2 4 8
Hint
题意
设S是一个数字串,定义函数occ(S,x)表示S中数字x的出现次数。
例如:S=(1,2,2,1,3),occ(S,1)=2,occ(S,2)=2,occ(S,3)=1。
如果对于任意的i,都有occ(u,i)=occ(w,i),那么我们认为数字串u和w匹配。
例如:(1,2,2,1,3)≈(1,3,2,1,2)
对于一个数字串S和一个正整数k,如果S可以分成若干个长度kk的连续子串,且这些子串两两匹配,那么我们称k是串S的一个完全阿贝尔周期。
给定一个数字串S,请找出它所有的完全阿贝尔周期。
题解:
枚举k,首先k必须是n的约数,然后就能算出每个数字应该出现多少次,O(n)检验即可。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int ok[maxn],a[maxn],c1[maxn],c2[maxn],n;
bool check(int x)
{
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(int i=1;i<=x;i++)
c1[a[i]]++;
for(int i=2;i<=n/x;i++)
{
int l=(i-1)*(x)+1;
int r=i*(x);
for(int j=l;j<=r;j++)
{
c2[a[j]]++;
if(c2[a[j]]>c1[a[j]])return 0;
}
for(int j=l;j<=r;j++)
c2[a[j]]--;
}
return 1;
}
void solve()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(ok,0,sizeof(ok));
for(int i=1;i<=n;i++)
{
if(n%i==0&&!ok[i])
{
if(check(i))
{
for(int j=i;j<=n;j+=i)
if(n%j==0)
ok[j]=1;
}
}
}
int fi=0;
for(int i=1;i<=n;i++)
{
if(ok[i])
{
if(fi==0)printf("%d",i),fi=1;
else printf(" %d",i);
}
}
printf("\n");
}
int main()
{
int t;
scanf("%d",&t);
while(t--)solve();
return 0;
}