BZOJ 3101: N皇后 构造
3101: N皇后
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=3101
Description
n*n的棋盘,在上面摆下n个皇后,使其两两间不能相互攻击….
Input
一个数n
Output
第i行表示在第i行第几列放置皇后
Sample Input
4
Sample Output
2
4
1
3
Hint
100%的数据3<n<1000000。输出任意一种合法解即可
题意
题解:
不要问我这结论哪儿来的,我也不知道
以下是找到的N皇后一组解得构造法:
一、当n mod 6 != 2 或 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1 (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;... 省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1 (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1 (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n (k为奇数,n为奇数)
代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;scanf("%d",&n);
if(n%6!=2&&n%6!=3)
{
for(int i=2;i<=n;i+=2)
printf("%d\n",i);
for(int i=1;i<=n;i+=2)
printf("%d\n",i);
return 0;
}
else
{
int k=n/2;
if(k%2==0&&n%2==0)
{
for(int i=k;i<=n;i+=2)
printf("%d\n",i);
for(int i=2;i<=k-2;i+=2)
printf("%d\n",i);
for(int i=k+3;i<=n-1;i+=2)
printf("%d\n",i);
for(int i=1;i<=k+1;i+=2)
printf("%d\n",i);
}
else if(k%2==0&&n%2==1)
{
for(int i=k;i<n;i+=2)
printf("%d\n",i);
for(int i=2;i<=k-2;i+=2)
printf("%d\n",i);
for(int i=k+3;i<=n-2;i+=2)
printf("%d\n",i);
for(int i=1;i<=k+1;i+=2)
printf("%d\n",i);
printf("%d\n",n);
}
else if(k%2==1&&n%2==0)
{
for(int i=k;i<n;i+=2)
printf("%d\n",i);
for(int i=1;i<=k-2;i+=2)
printf("%d\n",i);
for(int i=k+3;i<=n;i+=2)
printf("%d\n",i);
for(int i=2;i<=k+1;i+=2)
printf("%d\n",i);
}
else
{
for(int i=k;i<=n-2;i+=2)
printf("%d\n",i);
for(int i=1;i<=k-2;i+=2)
printf("%d\n",i);
for(int i=k+3;i<=n-1;i+=2)
printf("%d\n",i);
for(int i=2;i<=k+1;i+=2)
printf("%d\n",i);
printf("%d\n",n);
}
}
}