HDU 5839 Special Tetrahedron 计算几何
Special Tetrahedron
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5839
Description
Given n points which are in three-dimensional space(without repetition).
Please find out how many distinct Special Tetrahedron among them. A tetrahedron is called Special Tetrahedron if it has two following characters.
-
At least four edges have the same length.
-
If it has exactly four edges of the same length, the other two edges are not adjacent.
Input
Intput contains multiple test cases.
The first line is an integer T,1≤T≤20, the number of test cases.
Each case begins with an integer n(n≤200), indicating the number of the points.
The next n lines contains three integers xi,yi,zi, (−2000≤xi,yi,zi≤2000), representing the coordinates of the ith point.
Output
For each test case,output a line which contains"Case #x: y",x represents the xth test(starting from one),y is the number of Special Tetrahedron.
Sample Input
2
4
0 0 0
0 1 1
1 0 1
1 1 0
9
0 0 0
0 0 2
1 1 1
-1 -1 1
1 -1 1
-1 1 1
1 1 0
1 0 1
0 1 1
Sample Output
Case #1: 1
Case #2: 6
Hint
题意
给你三维一些点,问你有多少个四边形满足以下条件
1.至少四个边相同
2.如果四个边相同,那么不相同的两个边不在一起。
题解:
n4暴力,但实际上复杂度达不到n4【和出题人是否懒惰有关,233
暴力枚举两个点,然后再枚举离这两点距离相同的点。
再枚举四个点,找到这个四边形四边相同,但是不共面的四个点。
再判断这个是不是正四边形,如果是正四边形的话,你会重复计算6次
否则重复计算两次。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 205;
struct point
{
int x,y,z;
point(){}
point(int x_,int y_,int z_):x(x_),y(y_),z(z_) {}
}p[210];
long long sq(long long a){
return a*a;
}
long long dis(point a,point b){
return sq(a.x-b.x)+sq(a.y-b.y)+sq(a.z-b.z);
}
bool check(point a,point b,point c,point d)
{
point s1,s2,s3;
s1.x=b.x-a.x;s1.y=b.y-a.y;s1.z=b.z-a.z;
s2.x=c.x-a.x;s2.y=c.y-a.y;s2.z=c.z-a.z;
s3.x=d.x-a.x;s3.y=d.y-a.y;s3.z=d.z-a.z;
long long ans=s1.x*s2.y*s3.z+s1.y*s2.z*s3.x+s1.z*s2.x*s3.y-s1.z*s2.y*s3.x-s1.x*s2.z*s3.y-s1.y*s2.x*s3.z;
if(ans==0)return true;
return false;
}
int Q[300],cas;
void solve(){
int n;scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
}
long long ans1=0,ans2=0;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
int cnt=0;
for(int k=1;k<=n;k++)
{
if(k==i||k==j)continue;
if(dis(p[i],p[k])==dis(p[j],p[k]))
Q[cnt++]=k;
}
if(cnt<=1)continue;
for(int i1=0;i1<cnt;i1++)
{
for(int j1=i1+1;j1<cnt;j1++)
{
int id1=Q[i1],id2=Q[j1];
if(dis(p[id1],p[i])!=dis(p[id2],p[i]))continue;
if(check(p[i],p[j],p[id1],p[id2]))continue;
if(dis(p[i],p[j])==dis(p[id1],p[i])&&dis(p[i],p[j])==dis(p[id1],p[id2]))ans2++;
else ans1++;
}
}
}
}
printf("Case #%d: %d\n",++cas,ans1/2+ans2/6);
}
int main(){
int t;
scanf("%d",&t);
while(t--)solve();
return 0;
}