BZOJ 3564: [SHOI2014]信号增幅仪 最小圆覆盖

3564: [SHOI2014]信号增幅仪

题目连接:

http://www.lydsy.com/JudgeOnline/problem.php?id=3564

Description

无线网络基站在理想状况下有效信号覆盖范围是个圆形。而无线基站的功耗与圆的半径的平方成正比。
现给出平面上若干网络用户的位置,请你选择一个合适的位置建设无线基站....
就在你拿起键盘准备开始敲代码的时候,你的好朋友发明家 SHTSC 突然出现了。SHTSC 刚刚完成了他的新发明——无线信号增幅仪。增幅仪能够在不增加无线基站功耗的前提下,使得有效信号的覆盖范围在某一特定方向上伸长若干倍。即:使用了增幅仪的无线基站覆盖范围是个椭圆,其功耗正比于半短轴长的平方。现给出平面上若干网络用户的位置,请你选择一个合适的位置建设无线基站,并在增幅仪的帮助下使所有的用户都能接收到信号,且无线基站的功耗最小。
注意:由于SHTSC 增幅仪的工作原理依赖地磁场,增幅的方向是恒定的。

Input

第一行一个整数:n。平面内的用户个数。
之后的 n 行每行两个整数 x, y,表示一个用户的位置。
第 n+2 行一个整数:a。表示增幅仪的增幅方向,单位是度。表示增幅仪的方向是从 x 正方向逆时针转 a 度。
第 n+3 行一个整数:p。表示增幅仪的放大倍数。

Output

输出一行一个实数,为能够覆盖所有用户的最小椭圆的半短轴长,四舍五入到三位小数。

Sample Input

样例一:

2

1 0

-1 0

0

2

样例二:

3

1 1

-1 -1

0 0

4 5

7

Sample Output

样例一:

0.500

样例二:

0.202

Hint

对于 100%的数据,n≤50000,0≤a<180,1≤p≤100,|x|,|y|≤2×10^8。

题意

题解:

椭圆的话,先把所有点都旋转一下,使得椭圆的长轴在x轴上面。

然后再让所有点都缩小放大的倍数,那么这道题就可以转化为最小圆覆盖了。

然后跑随机增量法就好了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 50005;
const double pi = acos(-1.0);
const double EP  = 1E-6;
struct POINT
{
 double x;
 double y;
 POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
POINT operator +(POINT p1,POINT p2){
    return POINT(p1.x+p2.x,p1.y+p2.y);
}
POINT operator -(POINT p1,POINT p2){
    return POINT(p1.x-p2.x,p1.y-p2.y);
}
double operator *(POINT p1,POINT p2){
    return p1.x*p2.y-p1.y*p2.x;
}
POINT operator /(POINT p1,double x){
    return POINT(p1.x/x,p1.y/x);
}
POINT operator *(POINT p,double x){
    return POINT(p.x*x,p.y*x);
}
struct LINESEG
{
 POINT s;
 POINT e;
 LINESEG(POINT a, POINT b) { s=a; e=b;}
 LINESEG() { }
};
struct LINE           // 直线的解析方程 a*x+b*y+c=0  为统一表示,约定 a >= 0
{
   double a;
   double b;
   double c;
   LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
// 返回点p以点o为圆心逆时针旋转alpha(单位:弧度)后所在的位置
POINT rotate(POINT o,double alpha,POINT p)
{
 POINT tp;
 p.x-=o.x;
 p.y-=o.y;
 tp.x=p.x*cos(alpha)-p.y*sin(alpha)+o.x;
 tp.y=p.y*cos(alpha)+p.x*sin(alpha)+o.y;
 return tp;
}
int n;
POINT po[maxn],O;
double r;
double dis(POINT A,POINT B){
    return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
}
POINT circumcenter(const POINT &a,const POINT &b,const POINT &c)
{ //返回三角形的外心
    POINT ret;
    double a1=b.x-a.x,b1=b.y-a.y,c1=(a1*a1+b1*b1)/2.0;
    double a2=c.x-a.x,b2=c.y-a.y,c2=(a2*a2+b2*b2)/2.0;
    double d=a1*b2-a2*b1;
    ret.x=a.x+(c1*b2-c2*b1)/d;
    ret.y=a.y+(a1*c2-a2*c1)/d;
    return ret;
}
void min_cover_circle(POINT *p,int n,POINT &c,double &r){ //c为圆心,r为半径
    random_shuffle(p,p+n); //
    c=p[0]; r=0;
    for(int i=1;i<n;i++)
    {
        if(dis(p[i],c)>r+EP)  //第一个点
        {
            c=p[i]; r=0;
            for(int j=0;j<i;j++)
                if(dis(p[j],c)>r+EP) //第二个点
                {
                    c.x=(p[i].x+p[j].x)/2;
                    c.y=(p[i].y+p[j].y)/2;
                    r=dis(p[j],c);
                    for(int k=0;k<j;k++)
                        if(dis(p[k],c)>r+EP) //第三个点
                        {//求外接圆圆心,三点必不共线
                            c=circumcenter(p[i],p[j],p[k]);
                            r=dis(p[i],c);
                        }
                }
        }
    }
}
int main(){
    srand(772002);
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%lf%lf",&po[i].x,&po[i].y);
    }
    double a,p;
    scanf("%lf%lf",&a,&p);
    double ang=-a/180.0*pi;
    for(int i=0;i<n;i++){
        po[i]=rotate(POINT(0,0),ang,po[i]);
        po[i].x/=p;
    }
    min_cover_circle(po,n,O,r);
    printf("%.3f\n",r);
}
posted @ 2016-08-08 09:49  qscqesze  阅读(739)  评论(0编辑  收藏  举报