SnackDown Longest Increasing Subsequences 构造题
Longest Increasing Subsequences
题目连接:
https://www.codechef.com/SNCKPA16/problems/MAKELIS
Description
大厨最近了解了经典的最长上升子序列问题。然而,大厨发现,虽然最长上升子序列的长度
是唯一的,但子序列本身却不一定唯一。比如,序列 [1, 3, 2, 4] 的最长上升子序列有两个:[1, 3, 4]
和 [1, 2, 4]。
大厨在这个方向上多做了些研究,然后提出了下面的这个问题:
给定 K,输出一个整数 N 以及一个 1 ∼ N 的排列,使得这一排列包含恰好 K 个最长上升子
序列。大厨要求 1 ≤ N ≤ 100,不然问题就太简单了。
如果有多种可能的答案,输出任意一种即可。
Input
输入的第一行包含一个整数 T,表示测试数据的组数。接下来是 T 组数据。
每组数据仅有一行,包含一个整数 K。
Output
对于每组数据,输出两行。第一行包含一个整数 N,第二行包含 N 个整数,即 1 ∼ N 的一个
排列,以空格分隔。
• 1 ≤ T ≤ 2 · 104
• 1 ≤ K ≤ 105
Sample Input
2
1
2
Sample Output
5
1 2 3 4 5
4
1 3 2 4
Hint
题意
题解:
很有趣的题,一般来说第一想法是分解质因数,变成乘积的形式,我不知道这样搞不搞得出来,很麻烦的样子……
这道题的正确套路是分解进制,考虑你现在是用m进制去处理这个k,你可以得到b[0]b[1]b[2]这个玩意儿,表示这个m进制的每一位是啥
你现在做出来了b0,那么你就在b[0]前面扔m个小的倒叙的,然后再后面扔一个最小的,再倒叙扔b[1]个倒叙的
这样你就得到了mb[0]+b[1]了,然后一直递归下去,你就构造出来了m进制的
经过计算,发现m=6的时候,恰好能够构造出来,所以就做出来了~
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int k;
int pri[maxn];
vector<int>p;
void init()
{
for(int i=2;i<maxn;i++)
{
if(pri[i]==0)
{
for(int j=i+i;j<maxn;j+=i)
pri[j]=1;
}
}
}
int cnt[maxn],tot=0;
int solve()
{
scanf("%d",&k);
if(k==1)
{
cout<<"1"<<endl;
cout<<"1"<<endl;
return 1;
}
if(k==2)
{
cout<<"2"<<endl;
cout<<"2 1"<<endl;
return 2;
}
p.clear();
tot=0;
while(k)
{
cnt[tot++]=k%6;
k/=6;
}
reverse(cnt+0,cnt+tot);
for(int i=cnt[0];i;i--)
p.push_back(i);
for(int i=1;i<tot;i++)
{
if(cnt[i]==0){
for(int j=0;j<p.size();j++)
p[j]+=6;
reverse(p.begin(),p.end());
for(int j=1;j<=6;j++)
p.push_back(j);
reverse(p.begin(),p.end());
continue;
}
for(int j=0;j<p.size();j++)p[j]+=6;
reverse(p.begin(),p.end());
for(int j=1;j<=6;j++)
p.push_back(j);
reverse(p.begin(),p.end());
for(int j=0;j<p.size();j++)p[j]+=(cnt[i]+i);
for(int j=1;j<=i;j++)p.push_back(j);
for(int j=cnt[i]+i;j>i;j--)
p.push_back(j);
}
cout<<p.size()<<endl;
for(int i=0;i<p.size();i++)
cout<<p[i]<<" ";
cout<<endl;
return p.size();
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
solve();
}