HDU 4618 Palindrome Sub-Array 暴力
Palindrome Sub-Array
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=4618
Description
A palindrome sequence is a sequence which is as same as its reversed order. For example, 1 2 3 2 1 is a palindrome sequence, but 1 2 3 2 2 is not. Given a 2-D array of N rows and M columns, your task is to find a maximum sub-array of P rows and P columns, of which each row and each column is a palindrome sequence.
Input
The first line of input contains only one integer, T, the number of test cases. Following T blocks, each block describe one test case.
There is two integers N, M (1<=N, M<=300) separated by one white space in the first line of each block, representing the size of the 2-D array.
Then N lines follow, each line contains M integers separated by white spaces, representing the elements of the 2-D array. All the elements in the 2-D array will be larger than 0 and no more than 31415926.
Output
For each test case, output P only, the size of the maximum sub-array that you need to find.
Sample Input
1
5 10
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 9 10 4 5 6 7 8
Sample Output
4
Hint
题意
给你一个n,m的矩形,你需要找到一个最大正方形,使得每一行每一列都是回文的
输出正方形的边长
题解:
首先把奇数位置都填上-1,然后这样所有回文的东西都是奇数长度了
暴力预处理出以每一个数为中心,能够向上,向左边扩展多少
然后我们在n^2暴力枚举回文正方形的中心点,再O(N)的去check最大能扩展多少就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 701;
int M[maxn][maxn];
int M2[maxn][maxn];
int Len1[maxn][maxn],Len2[maxn][maxn];
int n,m;
void init()
{
memset(M,0,sizeof(M));
memset(M2,0,sizeof(M2));
memset(Len1,0,sizeof(Len1));
memset(Len2,0,sizeof(Len2));
}
void solve()
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&M2[i][j]);
for(int i=1;i<=2*n+1;i++)
{
for(int j=1;j<=2*m+1;j++)
{
if(i%2==1||j%2==1)M[i][j]=-1;
else M[i][j]=M2[i/2][j/2];
}
}
n=n*2+1;
m=m*2+1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int l = 0;
for(int k=0;j-k>=1&&j+k<=m;k++)
{
if(M[i][j-k]==M[i][j+k])
l=k;
else
break;
}
Len1[i][j]=l;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int l = 0;
for(int k=0;i+k<=n&&i-k>=1;k++)
{
if(M[i+k][j]==M[i-k][j])
l=k;
else
break;
}
Len2[i][j]=l;
}
}
int ans = 0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int Min1 = 1<<30;
int Min2 = 1<<30;
for(int l=0;i-l>=1&&i+l<=n&&j+l<=m&&j-l>=1;l++)
{
Min1=min(Min1,Len2[i][j-l]),Min1=min(Min1,Len2[i][j+l]);
Min2=min(Min2,Len1[i+l][j]),Min2=min(Min2,Len1[i-l][j]);
if(Min1<l||Min2<l)break;
if(M[i][j]==-1)ans = max(ans,l);
else ans = max(ans,l);
}
}
}
cout<<ans<<endl;
return;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)solve();
return 0;
}