hdu 5563 Clarke and five-pointed star 水题
Clarke and five-pointed star
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=5563
Description
Clarke is a patient with multiple personality disorder. One day, Clarke turned into a learner of geometric.
When he did a research with polygons, he found he has to judge if the polygon is a five-pointed star at many times. There are 5 points on a plane, he wants to know if a five-pointed star existed with 5 points given.
Input
The first line contains an integer T(1≤T≤10), the number of the test cases.
For each test case, 5 lines follow. Each line contains 2 real numbers xi,yi(−109≤xi,yi≤109), denoting the coordinate of this point.
Output
Two numbers are equal if and only if the difference between them is less than 10−4.
For each test case, print Yes if they can compose a five-pointed star. Otherwise, print No. (If 5 points are the same, print Yes. )
Sample Input
2
3.0000000 0.0000000
0.9270509 2.8531695
0.9270509 -2.8531695
-2.4270509 1.7633557
-2.4270509 -1.7633557
3.0000000 1.0000000
0.9270509 2.8531695
0.9270509 -2.8531695
-2.4270509 1.7633557
-2.4270509 -1.7633557
Sample Output
Yes
No
HINT
题意
给你五个点,问你是否能够构成一个正五边形,精度要求1e-4
题解:
直接判断是否有五条边相同,是否有五条对角线长度相同就好了
代码
#include<iostream> #include<stdio.h> #include<map> #include<vector> #include<algorithm> #include<math.h> using namespace std; const double eps = 1e-6; struct node { double x,y; }; node p[12]; vector<double> Q; double dis(node a,node b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } int is_equal(double x,double y) { return fabs(x-y)<eps; } map<long long,int> H; int main() { int t;scanf("%d",&t); for(int cas=1;cas<=t;cas++) { H.clear(); Q.clear(); for(int i=0;i<5;i++) scanf("%lf%lf",&p[i].x,&p[i].y); for(int i=0;i<5;i++) { for(int j=i+1;j<5;j++) { Q.push_back(dis(p[i],p[j])); } } int flag = 0; sort(Q.begin(),Q.end()); for(int i=0;i<Q.size();i++) { long long p = (100000.0*Q[i])*1LL; if(H[p]==0) { H[p]++; flag++; } else H[p]++; } if(flag>2) { printf("No\n"); continue; } long long p1 = 1LL*(100000.0*Q[0]); long long p2 = 1LL*(100000.0*Q[9]); if(H[p1]==10) { printf("Yes\n"); continue; } if(H[p1]!=5&&H[p2]!=5) { printf("No\n"); continue; } printf("Yes\n"); } }