UOJ #142. 【UER #5】万圣节的南瓜灯 并查集

#142. 【UER #5】万圣节的南瓜灯

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://uoj.ac/problem/142

Description

红包是一个心灵手巧的男孩子。今天是万圣节,红包正在家里制作南瓜灯。

这时候一群熊孩子们敲开了红包家的门,他们高呼着“不用给糖,只要捣蛋”的口号把红包的南瓜灯弄坏了。这让红包很难过,于是他打算把这些被弄坏的南瓜灯做成其他的工艺品。

红包把它的南瓜灯划分成了 n×m 的网格,并用 (x,y) 表示第 x 行,第 y 列的格子。两个格子是相邻的当且仅当它们有一条公共边,特殊地, (x,1) 和 (x,m) 红包也视为是相邻的,但是他不把 (1,x) 和 (n,x) 当做是相邻的。

对于一个有 K 个格子被弄坏的南瓜灯,如果它能被制作成工艺品,当且仅当对于任意两个没有被弄坏的格子,都存在且仅存在一条连接它们的简单路径。一条简单路径定义为一个只包含没有被弄坏的格子的序列 A1 至 An ,其中对于任意的 1≤i<n 都有 Ai 和 Ai+1 是相邻的,且每一个格子在序列中至多出现了一次。

现在红包有 T 个南瓜灯,他想让你帮他分别判断每一个南瓜灯能不能被做成工艺品。

Input

第一行一个正整数 T,表示南瓜灯数目。

对于每一个南瓜灯,第一行是三个整数 n,m,K,表示南瓜灯的大小和被弄坏的格子数。

接下来 K 行每行包含两个整数 x,y(1≤x≤n,1≤y≤m),表示第 x 行第 y 列的格子被弄坏了。

数据保证 n,m≥3,0≤K<nm 且不会重复描述一个被弄坏的格子。

Output

对于每一个南瓜灯,输出一行,如果这个南瓜灯能被做成工艺品,那么输出 "Yes",否则输出 "No"。

 

Sample Input

3
3 3 4
2 1
2 3
3 1
3 3
3 3 5
1 1
1 2
2 1
3 1
3 2
3 3 4
1 1
2 2
2 3
3 3

Sample Output

No
Yes
No

HINT

 

题意

 给你一个网格,然后有些地方是墙,然后问你空出来的地方,是否能够构成一颗树

注意,左右是相连的

题解:

就暴力就好了,注意如果n*m>3e5 是可以直接判断为no的

所以这个可以拿到很多测试点

代码

 

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
#define maxn 1005000
int n,m,k,x,y;
int fa[maxn];
int vis[maxn];
int fi(int x)
{
    return fa[x]==x?x:fa[x]=fi(fa[x]);
}
int flag = 0;
int tot = 0;
void uni(int x,int y)
{
    int p = fi(x);
    int q = fi(y);
    if(p==q)
        flag=1;
    if(p!=q)
    {
        fa[p]=q;
        tot++;
    }
}
int get(int x,int y)
{
    long long p = x*m-m+y;
    return p>1000000?1000001:p;
}
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        tot = 0;
        memset(vis,0,sizeof(vis));
        scanf("%d%d%d",&n,&m,&k);
        if(1ll*n*m>1000000){puts("No");for(int i=1;i<=k;i++)scanf("%d%d",&x,&y);continue;}
        for(int i=1;i<=k;i++)
        {
            scanf("%d%d",&x,&y);
            vis[get(x,y)]=1;
        }
        for(int i=1;i<=n*m;i++)
            fa[i]=i;
        flag = 0;
        for(int i=1;i<=n*m;i++)
        {
            if(vis[i]==0)
            {
                if(i%m==0&&!vis[i-m+1])
                    uni(i-m+1,i);
                if(i%m!=1&&!vis[i-1])
                    uni(i-1,i);
                if(i>m&&!vis[i-m])
                    uni(i-m,i);
                if(flag)break;
            }
            if(flag)break;
        }
        if(flag||tot+1!=n*m-k)
            printf("No\n");
        else
            puts("Yes");
    }
}

 

posted @ 2015-11-02 11:01  qscqesze  阅读(358)  评论(0编辑  收藏  举报