hdu 5195 DZY Loves Topological Sorting 线段树+拓扑排序
DZY Loves Topological Sorting
Time Limit: 1 Sec Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=5195Description
A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u→v) from vertex u to vertex v, u comes before v in the ordering.
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k edges from the graph.
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k edges from the graph.
Input
The input consists several test cases. (TestCase≤5)The first line, three integers n,m,k(1≤n,m≤105,0≤k≤m).
Each of the next m lines has two integers: u,v(u≠v,1≤u,v≤n), representing a direct edge(u→v).
Output
For each test case, output the lexicographically largest topological ordering.
Sample Input
5 5 2
1 2
4 5
2 4
3 4
2 3
3 2 0
1 2
1 3
1 2
4 5
2 4
3 4
2 3
3 2 0
1 2
1 3
Sample Output
5 3 1 2 4
1 3 2
1 3 2
HINT
题意
一张有向图的拓扑序列是图中点的一个排列,满足对于图中的每条有向边(u→v) 从 u 到 v,都满足u在排列中出现在v之前。
现在,DZY有一张有向无环图(DAG)。你要在最多删去k条边之后,求出字典序最大的拓扑序列。
题解:
因为我们要求最后的拓扑序列字典序最大,所以一定要贪心地将标号越大的点越早入队。我们定义点i的入度为di。假设当前还能删去k条边,那么我们一定会把当前还没入队的di≤k的最大的i找出来,把它的di条入边都删掉,然后加入拓扑序列。可以证明,这一定是最优的。
具体实现可以用线段树维护每个位置的di,在线段树上二分可以找到当前还没入队的di≤k的最大的i。于是时间复杂度就是O((n+m)logn).
代码:
//qscqesze #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> #include <stack> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 200001 #define mod 10007 #define eps 1e-9 int Num; char CH[20]; //const int inf=0x7fffffff; //нчоч╢С const int inf=0x3f3f3f3f; /* inline void P(int x) { Num=0;if(!x){putchar('0');puts("");return;} while(x>0)CH[++Num]=x%10,x/=10; while(Num)putchar(CH[Num--]+48); puts(""); } */ //************************************************************************************** inline ll read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } inline void P(int x) { Num=0;if(!x){putchar('0');puts("");return;} while(x>0)CH[++Num]=x%10,x/=10; while(Num)putchar(CH[Num--]+48); puts(""); } int du[100005]; int vis[100005]; vector<int> lin[100005]; int n,m,k; int t[500005]; int arr[100005]; void build(int i,int l,int r) { if (l==r) { t[i]=du[l]; arr[l]=i; return; } int mid=(l+r)/2; build(i*2,l,mid); build(i*2+1,mid+1,r); t[i]=min(t[i*2],t[i*2+1]); return; } int query(int i,int l,int r,int k) { if (l==r) return l; int mid=(l+r)/2; if (t[i*2+1]<=k) return query(i*2+1,mid+1,r,k); else return query(i*2,l,mid,k); } void insert(int i,int l,int r,int wei,int cc) { if (l==r) { t[i]+=cc; return; } int mid=(l+r)/2; if (wei<=mid) insert(i*2,l,mid,wei,cc); else insert(i*2+1,mid+1,r,wei,cc); t[i]=min(t[i*2],t[i*2+1]); return; } int main() { while (cin>>n>>m>>k) { memset(vis,0,sizeof(vis)); memset(du,0,sizeof(du)); for (int i=1;i<=n;i++) lin[i].clear(); int i,j; for (int tt=1;tt<=m;tt++) { scanf("%d%d",&i,&j); lin[i].push_back(j); du[j]++; } int nn=0; int flag=0; build(1,1,n); for (int i=1;i<=n;i++) { int c=query(1,1,n,k); if (flag) printf(" "); printf("%d",c); flag=1; k-=du[c]; insert(1,1,n,c,9999999); for (int kk=0;kk<lin[c].size();kk++) { int j=lin[c][kk]; insert(1,1,n,j,-1); du[j]--; } } printf("\n"); } }