hdoj 5113 Black And White DFS+剪枝
Black And White
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 929 Accepted Submission(s): 238
Special Judge
Problem Description
In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia
In this problem, you have to solve the 4-color problem. Hey, I’m just joking.
You are asked to solve a similar problem:
Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.
Matt hopes you can tell him a possible coloring.
Input
The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.
For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).
The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.
It’s guaranteed that c1 + c2 + · · · + cK = N × M .
Output
For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).
In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.
If there are multiple solutions, output any of them.
Sample Input
4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2
Sample Output
Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1
题意
给你n*m的格子和K个颜色,然后问你能不能涂出每个格子相邻的颜色都不一样的图案,任意输出一种就好
题解
DFS,但是会T,所以需要神剪枝
如果当前的颜色数量,大于剩下格子的一半的话,那么肯定是可以直接return的,因为必然会有两个相同颜色的格子挨在一起
所以,我们可以就这样剪枝
代码
int c[maxn];
int flag=0;
int kiss[maxn][maxn];
int n,m,k;
void dfs(int x,int y,int cur)
{
if(flag==1)
return;
if(cur==0)
{
flag=1;
printf("YES\n");
REP_1(i,n)
{
REP_1(j,m)
{
if(j==1)
printf("%d",kiss[i][j]);
else
printf(" %d",kiss[i][j]);
}
printf("\n");
}
return;
}
REP_1(i,k)
{
if(c[i]>(cur+1)/2)
return;
}
//cout<<x<<" "<<y<<" "<<cur<<endl;
REP_1(i,k)
{
if((kiss[x-1][y]!=i&&kiss[x][y-1]!=i)&&c[i]>0)
{
kiss[x][y]=i;
c[i]--;
if(y==m)
dfs(x+1,1,cur-1);
else
dfs(x,y+1,cur-1);
c[i]++;
kiss[x][y]=0;
}
}
}
int main()
{
int t;
RD(t);
REP_1(ti,t)
{
RD(n),RD(m),RD(k);
memset(c,0,sizeof(c));
memset(kiss,0,sizeof(kiss));
flag=0;
REP_1(i,k)
cin>>c[i];
printf("Case #%d:\n",ti);
dfs(1,1,n*m);
if(flag!=1)
printf("NO\n");
}
}