poj 1273 Drainage Ditches 网络流最大流基础
Drainage Ditches
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 59176 | Accepted: 22723 |
Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
Input
The input includes several cases.
For each case, the first line contains two space-separated integers, N
(0 <= N <= 200) and M (2 <= M <= 200). N is the number of
ditches that Farmer John has dug. M is the number of intersections
points for those ditches. Intersection 1 is the pond. Intersection point
M is the stream. Each of the following N lines contains three integers,
Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the
intersections between which this ditch flows. Water will flow through
this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the
maximum rate at which water will flow through the ditch.
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond.
Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
Sample Output
50
//手打dinic,从我做起!
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 10000
#define eps 1e-9
const int inf=0x7fffffff; //无限大
//**************************************************************************************
struct edge
{
int to,cap,rev;
};
vector<edge> g[maxn];
int level[maxn];
int iter[maxn];
void add_edge(int from,int to,int cap)
{
g[from].push_back((edge){to,cap,g[to].size()});
g[to].push_back((edge){from,0,g[from].size()-1});
}
void bfs(int s)
{
memset(level,-1,sizeof(level));
queue<int> que;
level[s]=0;
que.push(s);
while(!que.empty())
{
int v=que.front();
que.pop();
for(int i=0;i<g[v].size();i++)
{
edge &e=g[v][i];
if(e.cap>0&&level[e.to]<0)
{
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f)
{
if(v==t)return f;
for(int &i=iter[v];i<g[v].size();i++)
{
edge &e=g[v][i];
if(e.cap>0&&level[v]<level[e.to])
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
g[e.to][e.rev].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(1)
{
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,inf))>0)
flow+=f;
}
}
int main()
{
int n,m;
while(cin>>n>>m)
{
for(int i=0;i<=m;i++)
g[i].clear();
int a,b,c;
for(int i=0;i<n;i++)
{
cin>>a>>b>>c;
add_edge(a,b,c);
}
cout<<max_flow(1,m)<<endl;
}
}