CF 277.5 B.BerSU Ball 二分图的最大匹配 模版题
题意:求二分图的最大匹配数量
模版如下:
//二分图匹配(匈牙利算法的DFS实现)
//初始化:g[][]两边顶点的划分情况
//建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
//g没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,DFS找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//*******************
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); const int MAXN=510; int uN,vN;//u,v数目 int g[MAXN][MAXN]; int linker[MAXN]; bool used[MAXN]; bool dfs(int u)//从左边开始找增广路径 { int v; for(v=0;v<vN;v++)//这个顶点编号从0开始,若要从1开始需要修改 if(g[u][v]&&!used[v]) { used[v]=true; if(linker[v]==-1||dfs(linker[v])) {//找增广路,反向 linker[v]=u; return true; } } return false;//这个不要忘了,经常忘记这句 } int hungary() { int res=0; int u; memset(linker,-1,sizeof(linker)); for(u=0;u<uN;u++) { memset(used,0,sizeof(used)); if(dfs(u)) res++; } return res; }
A题代码:
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); const int MAXN=510; int uN,vN;//u,v数目 int g[MAXN][MAXN]; int linker[MAXN]; bool used[MAXN]; bool dfs(int u)//从左边开始找增广路径 { int v; for(v=0;v<vN;v++)//这个顶点编号从0开始,若要从1开始需要修改 if(g[u][v]&&!used[v]) { used[v]=true; if(linker[v]==-1||dfs(linker[v])) {//找增广路,反向 linker[v]=u; return true; } } return false;//这个不要忘了,经常忘记这句 } int hungary() { int res=0; int u; memset(linker,-1,sizeof(linker)); for(u=0;u<uN;u++) { memset(used,0,sizeof(used)); if(dfs(u)) res++; } return res; } int main() { memset(g,0,sizeof(g)); int b[MAXN],g1[MAXN]; cin>>uN; for(int i=0;i<uN;i++) cin>>b[i]; cin>>vN; for(int i=0;i<vN;i++) cin>>g1[i]; for(int i=0;i<uN;i++) { for(int j=0;j<vN;j++) { if(fabs(b[i]-g1[j])<=1) g[i][j]=1; } } cout<<hungary()<<endl; return 0; }