完全背包

\(N\) 种物品和一个容量是 \(V\) 的背包,每种物品都有无限件可用。

\(i\) 种物品的体积是 \(vi\),价值是 \(wi\)

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,\(N\)\(V\),用空格隔开,分别表示物品种数和背包容积。

接下来有 \(N\) 行,每行两个整数 \(vi\),\(wi\),用空格隔开,分别表示第 \(i\) 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

\(0<N,V≤1000\)

\(0<vi,wi≤1000\)

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

最朴素方法(超时)

#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++)
    {
        cin>>v[i]>>w[i];
    }

    for(int i = 1 ; i<=n ;i++)
    for(int j = 0 ; j<=m ;j++)
    {
        for(int k = 0 ; k*v[i]<=j ; k++)
            f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
    }

    cout<<f[n][m]<<endl;
}

优化思路

我们列举一下更新次序的内部关系:

f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w ,  f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max(            f[i-1,j-v]   ,  f[i-1,j-2*v] + w , f[i-1,j-2*v]+2*w , .....)
由上两式,可得出如下递推关系: 
                        f[i][j]=max(f[i,j-v]+w , f[i-1][j]) 

有了上面的关系,那么其实k循环可以不要了,核心代码优化成这样:

for(int i = 1 ; i <=n ;i++)
for(int j = 0 ; j <=m ;j++)
{
    f[i][j] = f[i-1][j];
    if(j-v[i]>=0)
        f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]); //可以重复的选择
}

对比一下,下面是01背包的核心代码

for(int i = 1 ; i <= n ; i++)
for(int j = 0 ; j <= m ; j ++)
{
    f[i][j] = f[i-1][j];
    if(j-v[i]>=0)
        f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]); //不重复的选则
}

两个代码其实只有一句不同(注意下标)

f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);//01背包

f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);//完全背包问题,背包可以重复,所以不用 i -1

因为和01背包代码很相像,我们很容易想到进一步优化。核心代码可以改成下面这样

  • f[j] = max(f[j],f[j-v[i]] + w[i])背包可以重复,所以从小到大选择
 for(int i = 1 ; i<=n ;i++)
    for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样
    {
            f[j] = max(f[j],f[j-v[i]]+w[i]);
    }

比较简洁的写法

#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++)
    {
        cin>>v[i]>>w[i];
    }

    for(int i = 1 ; i<=n ;i++)
    for(int j = v[i] ; j<=m ;j++)
    {
            f[j] = max(f[j],f[j-v[i]]+w[i]);
    }
    cout<<f[m]<<endl;
}

原文地址

posted @ 2021-05-03 23:51  zko  阅读(79)  评论(0编辑  收藏  举报