01背包问题

N 件物品和一个容量是 V的背包。每件物品只能使用一次。

i件物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

0|1输入格式

第一行两个整数,NV,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

0|2输出格式

输出一个整数,表示最大价值。

0|3数据范围

0<N,V1000

0<vi,wi1000

0|4输入样例

4 5 1 2 2 4 3 4 4 5

0|5输出样例:

8

1|0二维方法

  1. 状态f[i][j]定义:前 i 个物品,背包容量 j 下的最优解(最大价值):
  • 当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
    (2)当前背包容量不够(j < v[i]),没得选,因此前 i 个物品最优解即为前 i1 个物品最优解:

    对应代码:f[i][j] = f[i - 1][j]
    (3)当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:

    选:f[i][j] = f[i - 1][j - v[i]] + w[i]
    不选:f[i][j] = f[i - 1][j]
    我们的决策是如何取到最大价值,因此以上两种情况取 max()
    代码如下:

#include<bits/stdc++.h> using namespace std; const int MAXN = 1005; int v[MAXN]; // 体积 int w[MAXN]; // 价值 int f[MAXN][MAXN]; // f[i][j], j体积下前i个物品的最大价值 int main() { int n, m; cin >> n >> m; for(int i = 1; i <= n; i++) cin >> v[i] >> w[i]; for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) { // 当前背包容量装不进第i个物品,则价值等于前i-1个物品 if(j < v[i]) f[i][j] = f[i - 1][j]; // 能装,需进行决策是否选择第i个物品 else f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]); } cout << f[n][m] << endl; return 0; }

2|0一维方法

将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。

为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的ij最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

(1)状态f[j]定义:N 件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从m开始。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

(4)例如,一维状态第i轮对体积为 3 的物品进行决策,则f[7]f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]

(5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。

状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i]

for(int i = 1; i <= n; i++) for(int j = m; j >= 0; j--) { if(j < v[i]) f[i][j] = f[i - 1][j]; // 优化前 f[j] = f[j]; // 优化后,该行自动成立,可省略。 else f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]); // 优化前 f[j] = max(f[j], f[j - v[i]] + w[i]); // 优化后 }

实际上,只有当枚举的背包的容量>= v[i]时才会更新状态,因此我们可以修改循环终止条件进一步优化。

for(int i = 1; i <= n; i++) { for(int j = m; j >= v[i]; j--) f[j] = max(f[j], f[j - v[i]] + w[i]); }

关于状态f[j]的补充说明
二维下的状态定义f[i][j]是前 i 件物品,背包容量 j 下的最大价值。一维下,少了前 i 件物品这个维度,我们的代码中决策到第 i 件物品(循环到第i轮),f[j]就是前i轮已经决策的物品且背包容量 j 下的最大价值。

因此当执行完循环结构后,由于已经决策了所有物品,f[j]就是所有物品背包容量 j 下的最大价值。即一维f[j]等价于二维f[n][j]

3|0优化输入

我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。

因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。

#include<bits/stdc++.h> using namespace std; const int MAXN = 1005; int f[MAXN]; // int main() { int n, m; cin >> n >> m; for(int i = 1; i <= n; i++) { int v, w; cin >> v >> w; // 边输入边处理 for(int j = m; j >= v; j--) f[j] = max(f[j], f[j - v] + w); } cout << f[m] << endl; return 0; }

原文地址


__EOF__

本文作者stone
本文链接https://www.cnblogs.com/qscgy/p/14728565.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   zko  阅读(76)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示