C语言可变参数,函数指针及回调函数

保命声明:笔者代码能力有限,若行文中有错漏之处欢迎大家指出。

C语言可变参数

[https://mp.weixin.qq.com/s/ydhK8HYuRD0lZazPsPxsvg]
c/c++语言具备一个不同于其他编程语言的的特性,即支持可变参数。
例如C库中的printf,scanf等函数,都支持输入数量不定的参数。printf函数原型为 int printf(const char *format, …);

printf("hello world");  ////< 1个参数
printf("%d", a);         ////< 2个参数
printf("%d, %d", a, b); ////< 3个参数

测试

main.c

#include <stdio.h>
#include <stdarg.h>

#define uint8_t unsigned char
#define uint16_t unsigned short
#define uint32_t unsigned int

uint8_t add(uint8_t arg_num, ... ){
    uint8_t _result=0;
    uint32_t m= -0x7FFFFFFF;//32位系统最小整数
    uint16_t _m=-0x7FFF;//16位系统最小整数
    uint8_t __m=-0x7F;//8位系统最小整数
    
    va_list ap;//可变参数表指针
    va_start (ap , arg_num);//取得可变参数表首地址
    
    //遍历可变参数表
    for( uint8_t i=0;i<arg_num;i++){
        uint8_t t=va_arg(ap,uint8_t);//t依次对应参数
        _result += t;
    }
    va_end(ap);
    /*
     va_end ( list )实际上被定义为空,没有任何真实对应的代码,用于代码对称,与 va_start对应
     */
    return _result;
}
int main(void){
    printf("Add_result:%d\n",add(3,1,3,5));
    return 0;
}

结果:

C语言使用可变参数列表实现printf(my_printf)

[https://blog.51cto.com/shaungqiran/1681698]

//使用可变参数列表实现print("s\t c\n","bit-tech",'w');

#include<stdio.h>
#include<stdarg.h>

void int_to_char(int num)
{
	if ((num / 10) > 0)
		int_to_char(num / 10);
	putchar(num %10+ 48);
}


void my_print(char p[],...)
{
	char *str1 = p;
	int num = 0;
	char *pVal;
	va_list str;
	va_start(str,p);
	while (*str1)
	{
		if (*str1 == '%'&&*(str1 + 1) != '\0')
		{
			str1++;
			if (*str1 == 'd')
			{
				num = va_arg(str, int);
				int_to_char(num);
			}
			if (*str1 == 's')
			{
				pVal= (char *)va_arg(str, char *);
				while (*pVal)
				{
					putchar(*pVal);
					pVal++;
				}

			}
			if (*str1 == 'c')
			{
				putchar(va_arg(str, char));
			}
		}
		else if(*str1 == '\n')
		{
			putchar('\n');
		}
		else if (*str1 == '\t')
		{
			putchar('\t');
		}
		else
			putchar(*str1);
		str1++;
	}
	va_end(str);
}

int main()
{
	int a=1010;
	char b[20]="我是帅哥!";
	char c = '#';
	my_print("你\n%c是猪\n%d\n哈哈\n%s\n\t<-tab\n",c ,a,b);
	return 0;
}

结果:

printf函数原型

[https://www.cnblogs.com/LuanShiLiuNian/articles/15986712.html]
[https://gcc.gnu.org]
[https://github.com/embeddedartistry/libc]
[https://github.com/embeddedartistry/printf/tree/3014f5fc58bf2f1f4f4aa09300e6cbf9e7a76a1d]
来源:stdio.h

//macOS,XCode
int printf(const char * __restrict, ...) __printflike(1, 2);
//Windows,Visual Studio
_Check_return_opt_
	_CRT_STDIO_INLINE int __CRTDECL printf(
	_In_z_ _Printf_format_string_ char const* const _Format,
	...)
int printf( const char* format , [argument] ... );

C语言函数指针

[https://mp.weixin.qq.com/s/B1-owxujY-F3X3BrYyd-3A]
函数指针是指向函数的指针变量。
通常我们说的指针变量是指向一个整型、字符型或数组等变量,而函数指针是指向函数。
函数指针可以像一般函数一样,用于调用函数、传递参数。
函数指针的定义方式为:

函数返回值类型 (* 指针变量名) (函数参数列表);

注意:指向函数的指针变量没有++和--运算

测试

/*
 函数指针
 */
#include <stdio.h>
#include <stdarg.h>

#define uint8_t unsigned char
#define uint16_t unsigned short
#define uint32_t unsigned int

int Max(int, int);  //函数声明
int main(void)
{
    int(*p_Max)(int, int);  //定义一个函数指针
    int a, b, c;
    p_Max = &Max;  //把函数Max赋给指针变量p, 使p指向Max函数
    printf("please enter a and b:");
    scanf("%d%d", &a, &b);
    c = p_Max(a, b);  //通过函数指针调用Max函数
    printf("a = %d\nb = %d\nmax = %d\n", a, b, c);
    return 0;
}
int Max(int x, int y)  //定义Max函数
{
    int z=-0x7FFFFFFF;//32位最小整数
    if (x > y)
    {
        z = x;
    }
    else
    {
        z = y;
    }
    return z;
}

计算机最大整数

原码、反码和补码在表示正整数时相同(最高位为0)

32位:

16位:

8位:

C语言回调函数

[https://mp.weixin.qq.com/s/B1-owxujY-F3X3BrYyd-3A]
回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。

测试

#include <stdio.h>
#include <stdlib.h>

typedef void(*FunType)(int);
//前加一个typedef关键字,这样就定义一个名为FunType函数指针类型,而不是一个FunType变量。
//形式同 typedef int* PINT;
void myFun(int x);
void hisFun(int x);
void herFun(int x);
void callFun(FunType fp,int x);
int main()
{
    callFun(myFun,100);//传入函数指针常量,作为回调函数
    callFun(hisFun,200);
    callFun(herFun,300);

    return 0;
}

void callFun(FunType fp,int x)
{
    fp(x);//通过fp的指针执行传递进来的函数,注意fp所指的函数有一个参数
}

void myFun(int x)
{
    printf("myFun: %d\n",x);
}
void hisFun(int x)
{
    printf("hisFun: %d\n",x);
}
void herFun(int x)
{
    printf("herFun: %d\n",x);
}

结果:

附录

stdio.h文件

/*
 * Copyright (c) 2000, 2005, 2007, 2009, 2010 Apple Inc. All rights reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_LICENSE_HEADER_END@
 */
/*-
 * Copyright (c) 1990, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Chris Torek.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)stdio.h	8.5 (Berkeley) 4/29/95
 */

#ifndef	_STDIO_H_
#define	_STDIO_H_

#include <_stdio.h>

__BEGIN_DECLS
extern FILE *__stdinp;
extern FILE *__stdoutp;
extern FILE *__stderrp;
__END_DECLS

#define	__SLBF	0x0001		/* line buffered */
#define	__SNBF	0x0002		/* unbuffered */
#define	__SRD	0x0004		/* OK to read */
#define	__SWR	0x0008		/* OK to write */
	/* RD and WR are never simultaneously asserted */
#define	__SRW	0x0010		/* open for reading & writing */
#define	__SEOF	0x0020		/* found EOF */
#define	__SERR	0x0040		/* found error */
#define	__SMBF	0x0080		/* _buf is from malloc */
#define	__SAPP	0x0100		/* fdopen()ed in append mode */
#define	__SSTR	0x0200		/* this is an sprintf/snprintf string */
#define	__SOPT	0x0400		/* do fseek() optimisation */
#define	__SNPT	0x0800		/* do not do fseek() optimisation */
#define	__SOFF	0x1000		/* set iff _offset is in fact correct */
#define	__SMOD	0x2000		/* true => fgetln modified _p text */
#define __SALC  0x4000		/* allocate string space dynamically */
#define __SIGN  0x8000		/* ignore this file in _fwalk */

/*
 * The following three definitions are for ANSI C, which took them
 * from System V, which brilliantly took internal interface macros and
 * made them official arguments to setvbuf(), without renaming them.
 * Hence, these ugly _IOxxx names are *supposed* to appear in user code.
 *
 * Although numbered as their counterparts above, the implementation
 * does not rely on this.
 */
#define	_IOFBF	0		/* setvbuf should set fully buffered */
#define	_IOLBF	1		/* setvbuf should set line buffered */
#define	_IONBF	2		/* setvbuf should set unbuffered */

#define	BUFSIZ	1024		/* size of buffer used by setbuf */
#define	EOF	(-1)

				/* must be == _POSIX_STREAM_MAX <limits.h> */
#define	FOPEN_MAX	20	/* must be <= OPEN_MAX <sys/syslimits.h> */
#define	FILENAME_MAX	1024	/* must be <= PATH_MAX <sys/syslimits.h> */

/* System V/ANSI C; this is the wrong way to do this, do *not* use these. */
#ifndef _ANSI_SOURCE
#define	P_tmpdir	"/var/tmp/"
#endif
#define	L_tmpnam	1024	/* XXX must be == PATH_MAX */
#define	TMP_MAX		308915776

#ifndef SEEK_SET
#define	SEEK_SET	0	/* set file offset to offset */
#endif
#ifndef SEEK_CUR
#define	SEEK_CUR	1	/* set file offset to current plus offset */
#endif
#ifndef SEEK_END
#define	SEEK_END	2	/* set file offset to EOF plus offset */
#endif

#define	stdin	__stdinp
#define	stdout	__stdoutp
#define	stderr	__stderrp

#ifdef _DARWIN_UNLIMITED_STREAMS
#if defined(__IPHONE_OS_VERSION_MIN_REQUIRED) && __IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_3_2
#error "_DARWIN_UNLIMITED_STREAMS specified, but -miphoneos-version-min version does not support it."
#elif defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED < __MAC_10_6
#error "_DARWIN_UNLIMITED_STREAMS specified, but -mmacosx-version-min version does not support it."
#endif
#endif

/* ANSI-C */

__BEGIN_DECLS
void	 clearerr(FILE *);
int	 fclose(FILE *);
int	 feof(FILE *);
int	 ferror(FILE *);
int	 fflush(FILE *);
int	 fgetc(FILE *);
int	 fgetpos(FILE * __restrict, fpos_t *);
char	*fgets(char * __restrict, int, FILE *);
#if defined(_DARWIN_UNLIMITED_STREAMS) || defined(_DARWIN_C_SOURCE)
FILE	*fopen(const char * __restrict __filename, const char * __restrict __mode) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_3_2, __DARWIN_EXTSN(fopen));
#else /* !_DARWIN_UNLIMITED_STREAMS && !_DARWIN_C_SOURCE */
FILE	*fopen(const char * __restrict __filename, const char * __restrict __mode) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_2_0, __DARWIN_ALIAS(fopen));
#endif /* (DARWIN_UNLIMITED_STREAMS || _DARWIN_C_SOURCE) */
int	 fprintf(FILE * __restrict, const char * __restrict, ...) __printflike(2, 3);
int	 fputc(int, FILE *);
int	 fputs(const char * __restrict, FILE * __restrict) __DARWIN_ALIAS(fputs);
size_t	 fread(void * __restrict __ptr, size_t __size, size_t __nitems, FILE * __restrict __stream);
FILE	*freopen(const char * __restrict, const char * __restrict,
                 FILE * __restrict) __DARWIN_ALIAS(freopen);
int	 fscanf(FILE * __restrict, const char * __restrict, ...) __scanflike(2, 3);
int	 fseek(FILE *, long, int);
int	 fsetpos(FILE *, const fpos_t *);
long	 ftell(FILE *);
size_t	 fwrite(const void * __restrict __ptr, size_t __size, size_t __nitems, FILE * __restrict __stream) __DARWIN_ALIAS(fwrite);
int	 getc(FILE *);
int	 getchar(void);
char	*gets(char *);
void	 perror(const char *) __cold;
int	 printf(const char * __restrict, ...) __printflike(1, 2);
int	 putc(int, FILE *);
int	 putchar(int);
int	 puts(const char *);
int	 remove(const char *);
int	 rename (const char *__old, const char *__new);
void	 rewind(FILE *);
int	 scanf(const char * __restrict, ...) __scanflike(1, 2);
void	 setbuf(FILE * __restrict, char * __restrict);
int	 setvbuf(FILE * __restrict, char * __restrict, int, size_t);
int	 sprintf(char * __restrict, const char * __restrict, ...) __printflike(2, 3) __swift_unavailable("Use snprintf instead.");
int	 sscanf(const char * __restrict, const char * __restrict, ...) __scanflike(2, 3);
FILE	*tmpfile(void);

__swift_unavailable("Use mkstemp(3) instead.")
#if !defined(_POSIX_C_SOURCE)
__deprecated_msg("This function is provided for compatibility reasons only.  Due to security concerns inherent in the design of tmpnam(3), it is highly recommended that you use mkstemp(3) instead.")
#endif
char	*tmpnam(char *);
int	 ungetc(int, FILE *);
int	 vfprintf(FILE * __restrict, const char * __restrict, va_list) __printflike(2, 0);
int	 vprintf(const char * __restrict, va_list) __printflike(1, 0);
int	 vsprintf(char * __restrict, const char * __restrict, va_list) __printflike(2, 0) __swift_unavailable("Use vsnprintf instead.");
__END_DECLS



/* Additional functionality provided by:
 * POSIX.1-1988
 */

#if __DARWIN_C_LEVEL >= 198808L
#define	L_ctermid	1024	/* size for ctermid(); PATH_MAX */

__BEGIN_DECLS
#include <_ctermid.h>

#if defined(_DARWIN_UNLIMITED_STREAMS) || defined(_DARWIN_C_SOURCE)
FILE	*fdopen(int, const char *) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_3_2, __DARWIN_EXTSN(fdopen));
#else /* !_DARWIN_UNLIMITED_STREAMS && !_DARWIN_C_SOURCE */
FILE	*fdopen(int, const char *) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_2_0, __DARWIN_ALIAS(fdopen));
#endif /* (DARWIN_UNLIMITED_STREAMS || _DARWIN_C_SOURCE) */
int	 fileno(FILE *);
__END_DECLS
#endif /* __DARWIN_C_LEVEL >= 198808L */


/* Additional functionality provided by:
 * POSIX.2-1992 C Language Binding Option
 */
#if TARGET_OS_IPHONE
#define __swift_unavailable_on(osx_msg, ios_msg) __swift_unavailable(ios_msg)
#else
#define __swift_unavailable_on(osx_msg, ios_msg) __swift_unavailable(osx_msg)
#endif

#if __DARWIN_C_LEVEL >= 199209L
__BEGIN_DECLS
int	 pclose(FILE *) __swift_unavailable_on("Use posix_spawn APIs or NSTask instead.", "Process spawning is unavailable.");
#if defined(_DARWIN_UNLIMITED_STREAMS) || defined(_DARWIN_C_SOURCE)
FILE	*popen(const char *, const char *) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_3_2, __DARWIN_EXTSN(popen)) __swift_unavailable_on("Use posix_spawn APIs or NSTask instead.", "Process spawning is unavailable.");
#else /* !_DARWIN_UNLIMITED_STREAMS && !_DARWIN_C_SOURCE */
FILE	*popen(const char *, const char *) __DARWIN_ALIAS_STARTING(__MAC_10_6, __IPHONE_2_0, __DARWIN_ALIAS(popen)) __swift_unavailable_on("Use posix_spawn APIs or NSTask instead.", "Process spawning is unavailable.");
#endif /* (DARWIN_UNLIMITED_STREAMS || _DARWIN_C_SOURCE) */
__END_DECLS
#endif /* __DARWIN_C_LEVEL >= 199209L */

#undef __swift_unavailable_on

/* Additional functionality provided by:
 * POSIX.1c-1995,
 * POSIX.1i-1995,
 * and the omnibus ISO/IEC 9945-1: 1996
 */

#if __DARWIN_C_LEVEL >= 199506L

/* Functions internal to the implementation. */
__BEGIN_DECLS
int	__srget(FILE *);
int	__svfscanf(FILE *, const char *, va_list) __scanflike(2, 0);
int	__swbuf(int, FILE *);
__END_DECLS

/*
 * The __sfoo macros are here so that we can
 * define function versions in the C library.
 */
#define	__sgetc(p) (--(p)->_r < 0 ? __srget(p) : (int)(*(p)->_p++))
#if defined(__GNUC__) && defined(__STDC__)
__header_always_inline int __sputc(int _c, FILE *_p) {
	if (--_p->_w >= 0 || (_p->_w >= _p->_lbfsize && (char)_c != '\n'))
		return (*_p->_p++ = _c);
	else
		return (__swbuf(_c, _p));
}
#else
/*
 * This has been tuned to generate reasonable code on the vax using pcc.
 */
#define	__sputc(c, p) \
	(--(p)->_w < 0 ? \
		(p)->_w >= (p)->_lbfsize ? \
			(*(p)->_p = (c)), *(p)->_p != '\n' ? \
				(int)*(p)->_p++ : \
				__swbuf('\n', p) : \
			__swbuf((int)(c), p) : \
		(*(p)->_p = (c), (int)*(p)->_p++))
#endif

#define	__sfeof(p)	(((p)->_flags & __SEOF) != 0)
#define	__sferror(p)	(((p)->_flags & __SERR) != 0)
#define	__sclearerr(p)	((void)((p)->_flags &= ~(__SERR|__SEOF)))
#define	__sfileno(p)	((p)->_file)

__BEGIN_DECLS
void	 flockfile(FILE *);
int	 ftrylockfile(FILE *);
void	 funlockfile(FILE *);
int	 getc_unlocked(FILE *);
int	 getchar_unlocked(void);
int	 putc_unlocked(int, FILE *);
int	 putchar_unlocked(int);

/* Removed in Issue 6 */
#if !defined(_POSIX_C_SOURCE) || _POSIX_C_SOURCE < 200112L
int	 getw(FILE *);
int	 putw(int, FILE *);
#endif

__swift_unavailable("Use mkstemp(3) instead.")
#if !defined(_POSIX_C_SOURCE)
__deprecated_msg("This function is provided for compatibility reasons only.  Due to security concerns inherent in the design of tempnam(3), it is highly recommended that you use mkstemp(3) instead.")
#endif
char	*tempnam(const char *__dir, const char *__prefix) __DARWIN_ALIAS(tempnam);
__END_DECLS

#ifndef lint
#define	getc_unlocked(fp)	__sgetc(fp)
#define putc_unlocked(x, fp)	__sputc(x, fp)
#endif /* lint */

#define	getchar_unlocked()	getc_unlocked(stdin)
#define	putchar_unlocked(x)	putc_unlocked(x, stdout)
#endif /* __DARWIN_C_LEVEL >= 199506L */



/* Additional functionality provided by:
 * POSIX.1-2001
 * ISO C99
 */

#if __DARWIN_C_LEVEL >= 200112L
#include <sys/_types/_off_t.h>

__BEGIN_DECLS
int	 fseeko(FILE * __stream, off_t __offset, int __whence);
off_t	 ftello(FILE * __stream);
__END_DECLS
#endif /* __DARWIN_C_LEVEL >= 200112L */

#if __DARWIN_C_LEVEL >= 200112L || defined(_C99_SOURCE) || defined(__cplusplus)
__BEGIN_DECLS
int	 snprintf(char * __restrict __str, size_t __size, const char * __restrict __format, ...) __printflike(3, 4);
int	 vfscanf(FILE * __restrict __stream, const char * __restrict __format, va_list) __scanflike(2, 0);
int	 vscanf(const char * __restrict __format, va_list) __scanflike(1, 0);
int	 vsnprintf(char * __restrict __str, size_t __size, const char * __restrict __format, va_list) __printflike(3, 0);
int	 vsscanf(const char * __restrict __str, const char * __restrict __format, va_list) __scanflike(2, 0);
__END_DECLS
#endif /* __DARWIN_C_LEVEL >= 200112L || defined(_C99_SOURCE) || defined(__cplusplus) */



/* Additional functionality provided by:
 * POSIX.1-2008
 */

#if __DARWIN_C_LEVEL >= 200809L
#include <sys/_types/_ssize_t.h>

__BEGIN_DECLS
int	dprintf(int, const char * __restrict, ...) __printflike(2, 3) __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);
int	vdprintf(int, const char * __restrict, va_list) __printflike(2, 0) __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);
ssize_t getdelim(char ** __restrict __linep, size_t * __restrict __linecapp, int __delimiter, FILE * __restrict __stream) __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);
ssize_t getline(char ** __restrict __linep, size_t * __restrict __linecapp, FILE * __restrict __stream) __OSX_AVAILABLE_STARTING(__MAC_10_7, __IPHONE_4_3);
FILE *fmemopen(void * __restrict __buf, size_t __size, const char * __restrict __mode) __API_AVAILABLE(macos(10.13), ios(11.0), tvos(11.0), watchos(4.0));
FILE *open_memstream(char **__bufp, size_t *__sizep) __API_AVAILABLE(macos(10.13), ios(11.0), tvos(11.0), watchos(4.0));
__END_DECLS
#endif /* __DARWIN_C_LEVEL >= 200809L */



/* Darwin extensions */

#if __DARWIN_C_LEVEL >= __DARWIN_C_FULL
__BEGIN_DECLS
extern __const int sys_nerr;		/* perror(3) external variables */
extern __const char *__const sys_errlist[];

int	 asprintf(char ** __restrict, const char * __restrict, ...) __printflike(2, 3);
char	*ctermid_r(char *);
char	*fgetln(FILE *, size_t *);
__const char *fmtcheck(const char *, const char *);
int	 fpurge(FILE *);
void	 setbuffer(FILE *, char *, int);
int	 setlinebuf(FILE *);
int	 vasprintf(char ** __restrict, const char * __restrict, va_list) __printflike(2, 0);
FILE	*zopen(const char *, const char *, int);


/*
 * Stdio function-access interface.
 */
FILE	*funopen(const void *,
                 int (* _Nullable)(void *, char *, int),
                 int (* _Nullable)(void *, const char *, int),
                 fpos_t (* _Nullable)(void *, fpos_t, int),
                 int (* _Nullable)(void *));
__END_DECLS
#define	fropen(cookie, fn) funopen(cookie, fn, 0, 0, 0)
#define	fwopen(cookie, fn) funopen(cookie, 0, fn, 0, 0)

#define	feof_unlocked(p)	__sfeof(p)
#define	ferror_unlocked(p)	__sferror(p)
#define	clearerr_unlocked(p)	__sclearerr(p)
#define	fileno_unlocked(p)	__sfileno(p)

#endif /* __DARWIN_C_LEVEL >= __DARWIN_C_FULL */


#ifdef _USE_EXTENDED_LOCALES_
#include <xlocale/_stdio.h>
#endif /* _USE_EXTENDED_LOCALES_ */

#if defined (__GNUC__) && _FORTIFY_SOURCE > 0 && !defined (__cplusplus)
/* Security checking functions.  */
#include <secure/_stdio.h>
#endif

#endif /* _STDIO_H_ */

C语言printf子模块

[https://github.com/embeddedartistry/printf/tree/3014f5fc58bf2f1f4f4aa09300e6cbf9e7a76a1d]
[https://github.com/mpaland/printf]
printf.h

/**
 * @author (c) Eyal Rozenberg <eyalroz1@gmx.com>
 *             2021-2022, Haifa, Palestine/Israel
 * @author (c) Marco Paland (info@paland.com)
 *             2014-2019, PALANDesign Hannover, Germany
 *
 * @note Others have made smaller contributions to this file: see the
 * contributors page at https://github.com/eyalroz/printf/graphs/contributors
 * or ask one of the authors.
 *
 * @brief Small stand-alone implementation of the printf family of functions
 * (`(v)printf`, `(v)s(n)printf` etc., geared towards use on embedded systems with
 * a very limited resources.
 *
 * @note the implementations are thread-safe; re-entrant; use no functions from
 * the standard library; and do not dynamically allocate any memory.
 *
 * @license The MIT License (MIT)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#ifndef PRINTF_H_
#define PRINTF_H_

#ifdef __cplusplus
# include <cstdarg>
# include <cstddef>
extern "C" {
#else
# include <stdarg.h>
# include <stddef.h>
#endif

#ifdef __GNUC__
# define ATTR_PRINTF(one_based_format_index, first_arg) \
__attribute__((format(__printf__, (one_based_format_index), (first_arg))))
# define ATTR_VPRINTF(one_based_format_index) ATTR_PRINTF((one_based_format_index), 0)
#else
# define ATTR_PRINTF((one_based_format_index), (first_arg))
# define ATTR_VPRINTF(one_based_format_index)
#endif

#ifndef PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
#define PRINTF_ALIAS_STANDARD_FUNCTION_NAMES 0
#endif

#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
# define printf_    printf
# define sprintf_   sprintf
# define vsprintf_  vsprintf
# define snprintf_  snprintf
# define vsnprintf_ vsnprintf
# define vprintf_   vprintf
#endif

// If you want to include this implementation file directly rather than
// link against, this will let you control the functions' visibility,
// e.g. make them static so as not to clash with other objects also
// using them.
#ifndef PRINTF_VISIBILITY
#define PRINTF_VISIBILITY
#endif

/**
 * Prints/send a single character to some opaque output entity
 *
 * @note This function is not implemented by the library, only declared; you must provide an
 * implementation if you wish to use the @ref printf / @ref vprintf function (and possibly
 * for linking against the library, if your toolchain does not support discarding unused functions)
 *
 * @note The output could be as simple as a wrapper for the `write()` system call on a Unix-like
 * system, or even libc's @ref putchar , for replicating actual functionality of libc's @ref printf
 * function; but on an embedded system it may involve interaction with a special output device,
 * like a UART, etc.
 *
 * @note in libc's @ref putchar, the parameter type is an int; this was intended to support the
 * representation of either a proper character or EOF in a variable - but this is really not
 * meaningful to pass into @ref putchar and is discouraged today. See further discussion in:
 * @link https://stackoverflow.com/q/17452847/1593077
 *
 * @param c the single character to print
 */
PRINTF_VISIBILITY
void putchar_(char c);


/**
 * An implementation of the C standard's printf/vprintf
 *
 * @note you must implement a @ref putchar_ function for using this function - it invokes @ref putchar_
 * rather than directly performing any I/O (which insulates it from any dependence on the operating system
 * and external libraries).
 *
 * @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
 * additional arguments.
 * @param arg Additional arguments to the function, one for each %-specifier in @p format string
 * @return The number of characters written into @p s, not counting the terminating null character
 */
 ///@{
PRINTF_VISIBILITY
int printf_(const char* format, ...) ATTR_PRINTF(1, 2);
PRINTF_VISIBILITY
int vprintf_(const char* format, va_list arg) ATTR_VPRINTF(1);
///@}


/**
 * An implementation of the C standard's sprintf/vsprintf
 *
 * @note For security considerations (the potential for exceeding the buffer bounds), please consider using
 * the size-constrained variant, @ref snprintf / @ref vsnprintf , instead.
 *
 * @param s An array in which to store the formatted string. It must be large enough to fit the formatted
 * output!
 * @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
 * additional arguments.
 * @param arg Additional arguments to the function, one for each specifier in @p format
 * @return The number of characters written into @p s, not counting the terminating null character
 */
///@{
PRINTF_VISIBILITY
int  sprintf_(char* s, const char* format, ...) ATTR_PRINTF(2, 3);
PRINTF_VISIBILITY
int vsprintf_(char* s, const char* format, va_list arg) ATTR_VPRINTF(2);
///@}


/**
 * An implementation of the C standard's snprintf/vsnprintf
 *
 * @param s An array in which to store the formatted string. It must be large enough to fit either the
 * entire formatted output, or at least @p n characters. Alternatively, it can be NULL, in which case
 * nothing will be printed, and only the number of characters which _could_ have been printed is
 * tallied and returned.
 * @param n The maximum number of characters to write to the array, including a terminating null character
 * @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
 * additional arguments.
 * @param arg Additional arguments to the function, one for each specifier in @p format
 * @return The number of characters that COULD have been written into @p s, not counting the terminating
 *         null character. A value equal or larger than @p n indicates truncation. Only when the returned value
 *         is non-negative and less than @p n, the null-terminated string has been fully and successfully printed.
 */
///@{
PRINTF_VISIBILITY
int  snprintf_(char* s, size_t count, const char* format, ...) ATTR_PRINTF(3, 4);
PRINTF_VISIBILITY
int vsnprintf_(char* s, size_t count, const char* format, va_list arg) ATTR_VPRINTF(3);
///@}



/**
 * printf/vprintf with user-specified output function
 *
 * An alternative to @ref printf_, in which the output function is specified dynamically
 * (rather than @ref putchar_ being used)
 *
 * @param out An output function which takes one character and a type-erased additional parameters
 * @param extra_arg The type-erased argument to pass to the output function @p out with each call
 * @param format A string specifying the format of the output, with %-marked specifiers of how to interpret
 * additional arguments.
 * @param arg Additional arguments to the function, one for each specifier in @p format
 * @return The number of characters for which the output f unction was invoked, not counting the terminating null character
 *
 */
PRINTF_VISIBILITY
int fctprintf(void (*out)(char c, void* extra_arg), void* extra_arg, const char* format, ...) ATTR_PRINTF(3, 4);
PRINTF_VISIBILITY
int vfctprintf(void (*out)(char c, void* extra_arg), void* extra_arg, const char* format, va_list arg) ATTR_VPRINTF(3);

#ifdef __cplusplus
} // extern "C"
#endif

#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
# undef printf_
# undef sprintf_
# undef vsprintf_
# undef snprintf_
# undef vsnprintf_
# undef vprintf_
#endif

#endif  // PRINTF_H_

printf.c

/**
 * @author (c) Eyal Rozenberg <eyalroz1@gmx.com>
 *             2021-2022, Haifa, Palestine/Israel
 * @author (c) Marco Paland (info@paland.com)
 *             2014-2019, PALANDesign Hannover, Germany
 *
 * @note Others have made smaller contributions to this file: see the
 * contributors page at https://github.com/eyalroz/printf/graphs/contributors
 * or ask one of the authors. The original code for exponential specifiers was
 * contributed by Martijn Jasperse <m.jasperse@gmail.com>.
 *
 * @brief Small stand-alone implementation of the printf family of functions
 * (`(v)printf`, `(v)s(n)printf` etc., geared towards use on embedded systems with
 * a very limited resources.
 *
 * @note the implementations are thread-safe; re-entrant; use no functions from
 * the standard library; and do not dynamically allocate any memory.
 *
 * @license The MIT License (MIT)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#ifdef __cplusplus
#include <cstdint>
#include <climits>
extern "C" {
#else
#include <stdbool.h>
#include <stdint.h>
#include <limits.h>
#endif // __cplusplus

// Define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H ...) to include the
// printf_config.h header file
#if PRINTF_INCLUDE_CONFIG_H
#include "printf_config.h"
#endif

#include <stdbool.h>
#include <stdint.h>

#include <printf/printf.h>

#if PRINTF_ALIAS_STANDARD_FUNCTION_NAMES
# define printf_    printf
# define sprintf_   sprintf
# define vsprintf_  vsprintf
# define snprintf_  snprintf
# define vsnprintf_ vsnprintf
# define vprintf_   vprintf
#endif

// If you have -Wfloat-equal enabled, this source code will emit a number
// of warnings for float comparisons for equality. However, within the
// context of their use in this library, these are ok to use. So we
// disable the warning for this file.
// Define PRINTF_DISABLE_WARNING_PRAGMAS to disable this block
#ifndef PRINTF_DISABLE_WARNING_PRAGMAS
#if defined(__GNUC__) || defined (__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif // __GNUC__ || defined (__clang__)
#endif // PRINTF_DISABLE_WARNING_PRAGMAS

// 'ntoa' conversion buffer size, this must be big enough to hold one converted
// numeric number including padded zeros (dynamically created on stack)
#ifndef PRINTF_INTEGER_BUFFER_SIZE
#define PRINTF_INTEGER_BUFFER_SIZE    32
#endif

// size of the fixed (on-stack) buffer for printing individual decimal numbers.
// this must be big enough to hold one converted floating-point value including
// padded zeros.
#ifndef PRINTF_DECIMAL_BUFFER_SIZE
#define PRINTF_DECIMAL_BUFFER_SIZE    32
#endif

// Support for the decimal notation floating point conversion specifiers (%f, %F)
#ifndef PRINTF_SUPPORT_DECIMAL_SPECIFIERS
#define PRINTF_SUPPORT_DECIMAL_SPECIFIERS 1
#endif

// Support for the exponential notation floating point conversion specifiers (%e, %g, %E, %G)
#ifndef PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
#define PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS 1
#endif

// Support for the length write-back specifier (%n)
#ifndef PRINTF_SUPPORT_WRITEBACK_SPECIFIER
#define PRINTF_SUPPORT_WRITEBACK_SPECIFIER 1
#endif

// Default precision for the floating point conversion specifiers (the C standard sets this at 6)
#ifndef PRINTF_DEFAULT_FLOAT_PRECISION
#define PRINTF_DEFAULT_FLOAT_PRECISION  6
#endif

// According to the C languages standard, printf() and related functions must be able to print any
// integral number in floating-point notation, regardless of length, when using the %f specifier -
// possibly hundreds of characters, potentially overflowing your buffers. In this implementation,
// all values beyond this threshold are switched to exponential notation.
#ifndef PRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL
#define PRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL 9
#endif

// Support for the long long integral types (with the ll, z and t length modifiers for specifiers
// %d,%i,%o,%x,%X,%u, and with the %p specifier). Note: 'L' (long double) is not supported.
#ifndef PRINTF_SUPPORT_LONG_LONG
#define PRINTF_SUPPORT_LONG_LONG 1
#endif

// The number of terms in a Taylor series expansion of log_10(x) to
// use for approximation - including the power-zero term (i.e. the
// value at the point of expansion).
#ifndef PRINTF_LOG10_TAYLOR_TERMS
#define PRINTF_LOG10_TAYLOR_TERMS 4
#endif

#if PRINTF_LOG10_TAYLOR_TERMS <= 1
#error "At least one non-constant Taylor expansion is necessary for the log10() calculation"
#endif


#define PRINTF_PREFER_DECIMAL     false
#define PRINTF_PREFER_EXPONENTIAL true

///////////////////////////////////////////////////////////////////////////////

// The following will convert the number-of-digits into an exponential-notation literal
#define PRINTF_CONCATENATE(s1, s2) s1##s2
#define PRINTF_EXPAND_THEN_CONCATENATE(s1, s2) PRINTF_CONCATENATE(s1, s2)
#define PRINTF_FLOAT_NOTATION_THRESHOLD PRINTF_EXPAND_THEN_CONCATENATE(1e,PRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL)

// internal flag definitions
#define FLAGS_ZEROPAD   (1U <<  0U)
#define FLAGS_LEFT      (1U <<  1U)
#define FLAGS_PLUS      (1U <<  2U)
#define FLAGS_SPACE     (1U <<  3U)
#define FLAGS_HASH      (1U <<  4U)
#define FLAGS_UPPERCASE (1U <<  5U)
#define FLAGS_CHAR      (1U <<  6U)
#define FLAGS_SHORT     (1U <<  7U)
#define FLAGS_INT       (1U <<  8U)
  // Only used with PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
#define FLAGS_LONG      (1U <<  9U)
#define FLAGS_LONG_LONG (1U << 10U)
#define FLAGS_PRECISION (1U << 11U)
#define FLAGS_ADAPT_EXP (1U << 12U)
#define FLAGS_POINTER   (1U << 13U)
  // Note: Similar, but not identical, effect as FLAGS_HASH
#define FLAGS_SIGNED    (1U << 14U)
  // Only used with PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS

#ifdef PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS

#define FLAGS_INT8 FLAGS_CHAR


#if   (SHRT_MAX   == 32767LL)
#define FLAGS_INT16       FLAGS_SHORT
#elif (INT_MAX    == 32767LL)
#define FLAGS_INT16       FLAGS_INT
#elif (LONG_MAX   == 32767LL)
#define FLAGS_INT16       FLAGS_LONG
#elif (LLONG_MAX  == 32767LL)
#define FLAGS_INT16       FLAGS_LONG_LONG
#else
#error "No basic integer type has a size of 16 bits exactly"
#endif

#if   (SHRT_MAX   == 2147483647LL)
#define FLAGS_INT32       FLAGS_SHORT
#elif (INT_MAX    == 2147483647LL)
#define FLAGS_INT32       FLAGS_INT
#elif (LONG_MAX   == 2147483647LL)
#define FLAGS_INT32       FLAGS_LONG
#elif (LLONG_MAX  == 2147483647LL)
#define FLAGS_INT32       FLAGS_LONG_LONG
#else
#error "No basic integer type has a size of 32 bits exactly"
#endif

#if   (SHRT_MAX   == 9223372036854775807LL)
#define FLAGS_INT64       FLAGS_SHORT
#elif (INT_MAX    == 9223372036854775807LL)
#define FLAGS_INT64       FLAGS_INT
#elif (LONG_MAX   == 9223372036854775807LL)
#define FLAGS_INT64       FLAGS_LONG
#elif (LLONG_MAX  == 9223372036854775807LL)
#define FLAGS_INT64       FLAGS_LONG_LONG
#else
#error "No basic integer type has a size of 64 bits exactly"
#endif

#endif // PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS


typedef unsigned int printf_flags_t;

#define BASE_BINARY    2
#define BASE_OCTAL     8
#define BASE_DECIMAL  10
#define BASE_HEX      16

typedef uint8_t numeric_base_t;

#if PRINTF_SUPPORT_LONG_LONG
typedef unsigned long long printf_unsigned_value_t;
typedef long long          printf_signed_value_t;
#else
typedef unsigned long printf_unsigned_value_t;
typedef long          printf_signed_value_t;
#endif

// The printf()-family functions return an `int`; it is therefore
// unnecessary/inappropriate to use size_t - often larger than int
// in practice - for non-negative related values, such as widths,
// precisions, offsets into buffers used for printing and the sizes
// of these buffers. instead, we use:
typedef unsigned int printf_size_t;
#define PRINTF_MAX_POSSIBLE_BUFFER_SIZE INT_MAX
  // If we were to nitpick, this would actually be INT_MAX + 1,
  // since INT_MAX is the maximum return value, which excludes the
  // trailing '\0'.

#if (PRINTF_SUPPORT_DECIMAL_SPECIFIERS || PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
#include <float.h>
#if FLT_RADIX != 2
#error "Non-binary-radix floating-point types are unsupported."
#endif

#if DBL_MANT_DIG == 24

#define DOUBLE_SIZE_IN_BITS 32
typedef uint32_t double_uint_t;
#define DOUBLE_EXPONENT_MASK 0xFFU
#define DOUBLE_BASE_EXPONENT 127
#define DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10 -38
#define DOUBLE_MAX_SUBNORMAL_POWER_OF_10 1e-38

#elif DBL_MANT_DIG == 53

#define DOUBLE_SIZE_IN_BITS 64
typedef uint64_t double_uint_t;
#define DOUBLE_EXPONENT_MASK 0x7FFU
#define DOUBLE_BASE_EXPONENT 1023
#define DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10 -308
#define DOUBLE_MAX_SUBNORMAL_POWER_OF_10 1e-308

#else
#error "Unsupported double type configuration"
#endif
#define DOUBLE_STORED_MANTISSA_BITS (DBL_MANT_DIG - 1)

typedef union {
  double_uint_t U;
  double        F;
} double_with_bit_access;

// This is unnecessary in C99, since compound initializers can be used,
// but:
// 1. Some compilers are finicky about this;
// 2. Some people may want to convert this to C89;
// 3. If you try to use it as C++, only C++20 supports compound literals
static inline double_with_bit_access get_bit_access(double x)
{
  double_with_bit_access dwba;
  dwba.F = x;
  return dwba;
}

static inline int get_sign_bit(double x)
{
  // The sign is stored in the highest bit
  return (int) (get_bit_access(x).U >> (DOUBLE_SIZE_IN_BITS - 1));
}

static inline int get_exp2(double_with_bit_access x)
{
  // The exponent in an IEEE-754 floating-point number occupies a contiguous
  // sequence of bits (e.g. 52..62 for 64-bit doubles), but with a non-trivial representation: An
  // unsigned offset from some negative value (with the extremal offset values reserved for
  // special use).
  return (int)((x.U >> DOUBLE_STORED_MANTISSA_BITS ) & DOUBLE_EXPONENT_MASK) - DOUBLE_BASE_EXPONENT;
}
#define PRINTF_ABS(_x) ( (_x) > 0 ? (_x) : -(_x) )

#endif // (PRINTF_SUPPORT_DECIMAL_SPECIFIERS || PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)

// Note in particular the behavior here on LONG_MIN or LLONG_MIN; it is valid
// and well-defined, but if you're not careful you can easily trigger undefined
// behavior with -LONG_MIN or -LLONG_MIN
#define ABS_FOR_PRINTING(_x) ((printf_unsigned_value_t) ( (_x) > 0 ? (_x) : -((printf_signed_value_t)_x) ))

// wrapper (used as buffer) for output function type
//
// One of the following must hold:
// 1. max_chars is 0
// 2. buffer is non-null
// 3. function is non-null
//
// ... otherwise bad things will happen.
typedef struct {
  void (*function)(char c, void* extra_arg);
  void* extra_function_arg;
  char* buffer;
  printf_size_t pos;
  printf_size_t max_chars;
} output_gadget_t;

// Note: This function currently assumes it is not passed a '\0' c,
// or alternatively, that '\0' can be passed to the function in the output
// gadget. The former assumption holds within the printf library. It also
// assumes that the output gadget has been properly initialized.
static inline void putchar_via_gadget(output_gadget_t* gadget, char c)
{
  printf_size_t write_pos = gadget->pos++;
    // We're _always_ increasing pos, so as to count how may characters
    // _would_ have been written if not for the max_chars limitation
  if (write_pos >= gadget->max_chars) {
    return;
  }
  if (gadget->function != NULL) {
    // No check for c == '\0' .
    gadget->function(c, gadget->extra_function_arg);
  }
  else {
    // it must be the case that gadget->buffer != NULL , due to the constraint
    // on output_gadget_t ; and note we're relying on write_pos being non-negative.
    gadget->buffer[write_pos] = c;
  }
}

// Possibly-write the string-terminating '\0' character
static inline void append_termination_with_gadget(output_gadget_t* gadget)
{
  if (gadget->function != NULL || gadget->max_chars == 0) {
    return;
  }
  if (gadget->buffer == NULL) {
    return;
  }
  printf_size_t null_char_pos = gadget->pos < gadget->max_chars ? gadget->pos : gadget->max_chars - 1;
  gadget->buffer[null_char_pos] = '\0';
}

// We can't use putchar_ as is, since our output gadget
// only takes pointers to functions with an extra argument
static inline void putchar_wrapper(char c, void* unused)
{
  (void) unused;
  putchar_(c);
}

static inline output_gadget_t discarding_gadget()
{
  output_gadget_t gadget;
  gadget.function = NULL;
  gadget.extra_function_arg = NULL;
  gadget.buffer = NULL;
  gadget.pos = 0;
  gadget.max_chars = 0;
  return gadget;
}

static inline output_gadget_t buffer_gadget(char* buffer, size_t buffer_size)
{
  printf_size_t usable_buffer_size = (buffer_size > PRINTF_MAX_POSSIBLE_BUFFER_SIZE) ?
    PRINTF_MAX_POSSIBLE_BUFFER_SIZE : (printf_size_t) buffer_size;
  output_gadget_t result = discarding_gadget();
  if (buffer != NULL) {
    result.buffer = buffer;
    result.max_chars = usable_buffer_size;
  }
  return result;
}

static inline output_gadget_t function_gadget(void (*function)(char, void*), void* extra_arg)
{
  output_gadget_t result = discarding_gadget();
  result.function = function;
  result.extra_function_arg = extra_arg;
  result.max_chars = PRINTF_MAX_POSSIBLE_BUFFER_SIZE;
  return result;
}

static inline output_gadget_t extern_putchar_gadget()
{
  return function_gadget(putchar_wrapper, NULL);
}

// internal secure strlen
// @return The length of the string (excluding the terminating 0) limited by 'maxsize'
// @note strlen uses size_t, but wes only use this function with printf_size_t
// variables - hence the signature.
static inline printf_size_t strnlen_s_(const char* str, printf_size_t maxsize)
{
  const char* s;
  for (s = str; *s && maxsize--; ++s);
  return (printf_size_t)(s - str);
}


// internal test if char is a digit (0-9)
// @return true if char is a digit
static inline bool is_digit_(char ch)
{
  return (ch >= '0') && (ch <= '9');
}


// internal ASCII string to printf_size_t conversion
static printf_size_t atou_(const char** str)
{
  printf_size_t i = 0U;
  while (is_digit_(**str)) {
    i = i * 10U + (printf_size_t)(*((*str)++) - '0');
  }
  return i;
}


// output the specified string in reverse, taking care of any zero-padding
static void out_rev_(output_gadget_t* output, const char* buf, printf_size_t len, printf_size_t width, printf_flags_t flags)
{
  const printf_size_t start_pos = output->pos;

  // pad spaces up to given width
  if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
    for (printf_size_t i = len; i < width; i++) {
      putchar_via_gadget(output, ' ');
    }
  }

  // reverse string
  while (len) {
    putchar_via_gadget(output, buf[--len]);
  }

  // append pad spaces up to given width
  if (flags & FLAGS_LEFT) {
    while (output->pos - start_pos < width) {
      putchar_via_gadget(output, ' ');
    }
  }
}


// Invoked by print_integer after the actual number has been printed, performing necessary
// work on the number's prefix (as the number is initially printed in reverse order)
static void print_integer_finalization(output_gadget_t* output, char* buf, printf_size_t len, bool negative, numeric_base_t base, printf_size_t precision, printf_size_t width, printf_flags_t flags)
{
  printf_size_t unpadded_len = len;

  // pad with leading zeros
  {
    if (!(flags & FLAGS_LEFT)) {
      if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
        width--;
      }
      while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_INTEGER_BUFFER_SIZE)) {
        buf[len++] = '0';
      }
    }

    while ((len < precision) && (len < PRINTF_INTEGER_BUFFER_SIZE)) {
      buf[len++] = '0';
    }

    if (base == BASE_OCTAL && (len > unpadded_len)) {
      // Since we've written some zeros, we've satisfied the alternative format leading space requirement
      flags &= ~FLAGS_HASH;
    }
  }

  // handle hash
  if (flags & (FLAGS_HASH | FLAGS_POINTER)) {
    if (!(flags & FLAGS_PRECISION) && len && ((len == precision) || (len == width))) {
      // Let's take back some padding digits to fit in what will eventually
      // be the format-specific prefix
      if (unpadded_len < len) {
        len--; // This should suffice for BASE_OCTAL
      }
      if (len && (base == BASE_HEX || base == BASE_BINARY) && (unpadded_len < len)) {
        len--; // ... and an extra one for 0x or 0b
      }
    }
    if ((base == BASE_HEX) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_INTEGER_BUFFER_SIZE)) {
      buf[len++] = 'x';
    }
    else if ((base == BASE_HEX) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_INTEGER_BUFFER_SIZE)) {
      buf[len++] = 'X';
    }
    else if ((base == BASE_BINARY) && (len < PRINTF_INTEGER_BUFFER_SIZE)) {
      buf[len++] = 'b';
    }
    if (len < PRINTF_INTEGER_BUFFER_SIZE) {
      buf[len++] = '0';
    }
  }

  if (len < PRINTF_INTEGER_BUFFER_SIZE) {
    if (negative) {
      buf[len++] = '-';
    }
    else if (flags & FLAGS_PLUS) {
      buf[len++] = '+';  // ignore the space if the '+' exists
    }
    else if (flags & FLAGS_SPACE) {
      buf[len++] = ' ';
    }
  }

  out_rev_(output, buf, len, width, flags);
}

// An internal itoa-like function
static void print_integer(output_gadget_t* output, printf_unsigned_value_t value, bool negative, numeric_base_t base, printf_size_t precision, printf_size_t width, printf_flags_t flags)
{
  char buf[PRINTF_INTEGER_BUFFER_SIZE];
  printf_size_t len = 0U;

  if (!value) {
    if ( !(flags & FLAGS_PRECISION) ) {
      buf[len++] = '0';
      flags &= ~FLAGS_HASH;
      // We drop this flag this since either the alternative and regular modes of the specifier
      // don't differ on 0 values, or (in the case of octal) we've already provided the special
      // handling for this mode.
    }
    else if (base == BASE_HEX) {
      flags &= ~FLAGS_HASH;
      // We drop this flag this since either the alternative and regular modes of the specifier
      // don't differ on 0 values
    }
  }
  else {
    do {
      const char digit = (char)(value % base);
      buf[len++] = (char)(digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10);
      value /= base;
    } while (value && (len < PRINTF_INTEGER_BUFFER_SIZE));
  }

  print_integer_finalization(output, buf, len, negative, base, precision, width, flags);
}

#if (PRINTF_SUPPORT_DECIMAL_SPECIFIERS || PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)

// Stores a fixed-precision representation of a double relative
// to a fixed precision (which cannot be determined by examining this structure)
struct double_components {
  int_fast64_t integral;
  int_fast64_t fractional;
    // ... truncation of the actual fractional part of the double value, scaled
    // by the precision value
  bool is_negative;
};

#define NUM_DECIMAL_DIGITS_IN_INT64_T 18
#define PRINTF_MAX_PRECOMPUTED_POWER_OF_10  NUM_DECIMAL_DIGITS_IN_INT64_T
static const double powers_of_10[NUM_DECIMAL_DIGITS_IN_INT64_T] = {
  1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08,
  1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17
};

#define PRINTF_MAX_SUPPORTED_PRECISION NUM_DECIMAL_DIGITS_IN_INT64_T - 1


// Break up a double number - which is known to be a finite non-negative number -
// into its base-10 parts: integral - before the decimal point, and fractional - after it.
// Taken the precision into account, but does not change it even internally.
static struct double_components get_components(double number, printf_size_t precision)
{
  struct double_components number_;
  number_.is_negative = get_sign_bit(number);
  double abs_number = (number_.is_negative) ? -number : number;
  number_.integral = (int_fast64_t)abs_number;
  double remainder = (abs_number - (double) number_.integral) * powers_of_10[precision];
  number_.fractional = (int_fast64_t)remainder;

  remainder -= (double) number_.fractional;

  if (remainder > 0.5) {
    ++number_.fractional;
    // handle rollover, e.g. case 0.99 with precision 1 is 1.0
    if ((double) number_.fractional >= powers_of_10[precision]) {
      number_.fractional = 0;
      ++number_.integral;
    }
  }
  else if ((remainder == 0.5) && ((number_.fractional == 0U) || (number_.fractional & 1U))) {
    // if halfway, round up if odd OR if last digit is 0
    ++number_.fractional;
  }

  if (precision == 0U) {
    remainder = abs_number - (double) number_.integral;
    if ((!(remainder < 0.5) || (remainder > 0.5)) && (number_.integral & 1)) {
      // exactly 0.5 and ODD, then round up
      // 1.5 -> 2, but 2.5 -> 2
      ++number_.integral;
    }
  }
  return number_;
}

#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
struct scaling_factor {
  double raw_factor;
  bool multiply; // if true, need to multiply by raw_factor; otherwise need to divide by it
};

static double apply_scaling(double num, struct scaling_factor normalization)
{
  return normalization.multiply ? num * normalization.raw_factor : num / normalization.raw_factor;
}

static double unapply_scaling(double normalized, struct scaling_factor normalization)
{
  return normalization.multiply ? normalized / normalization.raw_factor : normalized * normalization.raw_factor;
}

static struct scaling_factor update_normalization(struct scaling_factor sf, double extra_multiplicative_factor)
{
  struct scaling_factor result;
  if (sf.multiply) {
    result.multiply = true;
    result.raw_factor = sf.raw_factor * extra_multiplicative_factor;
  }
  else {
    int factor_exp2 = get_exp2(get_bit_access(sf.raw_factor));
    int extra_factor_exp2 = get_exp2(get_bit_access(extra_multiplicative_factor));

    // Divide the larger-exponent raw raw_factor by the smaller
    if (PRINTF_ABS(factor_exp2) > PRINTF_ABS(extra_factor_exp2)) {
      result.multiply = false;
      result.raw_factor = sf.raw_factor / extra_multiplicative_factor;
    }
    else {
      result.multiply = true;
      result.raw_factor = extra_multiplicative_factor / sf.raw_factor;
    }
  }
  return result;
}

static struct double_components get_normalized_components(bool negative, printf_size_t precision, double non_normalized, struct scaling_factor normalization, int floored_exp10)
{
  struct double_components components;
  components.is_negative = negative;
  double scaled = apply_scaling(non_normalized, normalization);

  bool close_to_representation_extremum = ( (-floored_exp10 + (int) precision) >= DBL_MAX_10_EXP - 1 );
  if (close_to_representation_extremum) {
    // We can't have a normalization factor which also accounts for the precision, i.e. moves
    // some decimal digits into the mantissa, since it's unrepresentable, or nearly unrepresentable.
    // So, we'll give up early on getting extra precision...
    return get_components(negative ? -scaled : scaled, precision);
  }
  components.integral = (int_fast64_t) scaled;
  double remainder = non_normalized - unapply_scaling((double) components.integral, normalization);
  double prec_power_of_10 = powers_of_10[precision];
  struct scaling_factor account_for_precision = update_normalization(normalization, prec_power_of_10);
  double scaled_remainder = apply_scaling(remainder, account_for_precision);
  double rounding_threshold = 0.5;

  components.fractional = (int_fast64_t) scaled_remainder; // when precision == 0, the assigned value should be 0
  scaled_remainder -= (double) components.fractional; //when precision == 0, this will not change scaled_remainder

  components.fractional += (scaled_remainder >= rounding_threshold);
  if (scaled_remainder == rounding_threshold) {
    // banker's rounding: Round towards the even number (making the mean error 0)
    components.fractional &= ~((int_fast64_t) 0x1);
  }
  // handle rollover, e.g. the case of 0.99 with precision 1 becoming (0,100),
  // and must then be corrected into (1, 0).
  // Note: for precision = 0, this will "translate" the rounding effect from
  // the fractional part to the integral part where it should actually be
  // felt (as prec_power_of_10 is 1)
  if ((double) components.fractional >= prec_power_of_10) {
    components.fractional = 0;
    ++components.integral;
  }
  return components;
}
#endif // PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS

static void print_broken_up_decimal(
  struct double_components number_, output_gadget_t* output, printf_size_t precision,
  printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
{
  if (precision != 0U) {
    // do fractional part, as an unsigned number

    printf_size_t count = precision;

    // %g/%G mandates we skip the trailing 0 digits...
    if ((flags & FLAGS_ADAPT_EXP) && !(flags & FLAGS_HASH) && (number_.fractional > 0)) {
      while(true) {
        int_fast64_t digit = number_.fractional % 10U;
        if (digit != 0) {
          break;
        }
        --count;
        number_.fractional /= 10U;

      }
      // ... and even the decimal point if there are no
      // non-zero fractional part digits (see below)
    }

    if (number_.fractional > 0 || !(flags & FLAGS_ADAPT_EXP) || (flags & FLAGS_HASH) ) {
      while (len < PRINTF_DECIMAL_BUFFER_SIZE) {
        --count;
        buf[len++] = (char)('0' + number_.fractional % 10U);
        if (!(number_.fractional /= 10U)) {
          break;
        }
      }
      // add extra 0s
      while ((len < PRINTF_DECIMAL_BUFFER_SIZE) && (count > 0U)) {
        buf[len++] = '0';
        --count;
      }
      if (len < PRINTF_DECIMAL_BUFFER_SIZE) {
        buf[len++] = '.';
      }
    }
  }
  else {
    if ((flags & FLAGS_HASH) && (len < PRINTF_DECIMAL_BUFFER_SIZE)) {
      buf[len++] = '.';
    }
  }

  // Write the integer part of the number (it comes after the fractional
  // since the character order is reversed)
  while (len < PRINTF_DECIMAL_BUFFER_SIZE) {
    buf[len++] = (char)('0' + (number_.integral % 10));
    if (!(number_.integral /= 10)) {
      break;
    }
  }

  // pad leading zeros
  if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
    if (width && (number_.is_negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
      width--;
    }
    while ((len < width) && (len < PRINTF_DECIMAL_BUFFER_SIZE)) {
      buf[len++] = '0';
    }
  }

  if (len < PRINTF_DECIMAL_BUFFER_SIZE) {
    if (number_.is_negative) {
      buf[len++] = '-';
    }
    else if (flags & FLAGS_PLUS) {
      buf[len++] = '+';  // ignore the space if the '+' exists
    }
    else if (flags & FLAGS_SPACE) {
      buf[len++] = ' ';
    }
  }

  out_rev_(output, buf, len, width, flags);
}

      // internal ftoa for fixed decimal floating point
static void print_decimal_number(output_gadget_t* output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char* buf, printf_size_t len)
{
  struct double_components value_ = get_components(number, precision);
  print_broken_up_decimal(value_, output, precision, width, flags, buf, len);
}

#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS

// A floor function - but one which only works for numbers whose
// floor value is representable by an int.
static int bastardized_floor(double x)
{
  if (x >= 0) { return (int) x; }
  int n = (int) x;
  return ( ((double) n) == x ) ? n : n-1;
}

// Computes the base-10 logarithm of the input number - which must be an actual
// positive number (not infinity or NaN, nor a sub-normal)
static double log10_of_positive(double positive_number)
{
  // The implementation follows David Gay (https://www.ampl.com/netlib/fp/dtoa.c).
  //
  // Since log_10 ( M * 2^x ) = log_10(M) + x , we can separate the components of
  // our input number, and need only solve log_10(M) for M between 1 and 2 (as
  // the base-2 mantissa is always 1-point-something). In that limited range, a
  // Taylor series expansion of log10(x) should serve us well enough; and we'll
  // take the mid-point, 1.5, as the point of expansion.

  double_with_bit_access dwba = get_bit_access(positive_number);
  // based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
  int exp2 = get_exp2(dwba);
  // drop the exponent, so dwba.F comes into the range [1,2)
  dwba.U = (dwba.U & (((double_uint_t) (1) << DOUBLE_STORED_MANTISSA_BITS) - 1U)) |
           ((double_uint_t) DOUBLE_BASE_EXPONENT << DOUBLE_STORED_MANTISSA_BITS);
  double z = (dwba.F - 1.5);
  return (
    // Taylor expansion around 1.5:
    0.1760912590556812420           // Expansion term 0: ln(1.5)            / ln(10)
    + z     * 0.2895296546021678851 // Expansion term 1: (M - 1.5)   * 2/3  / ln(10)
#if PRINTF_LOG10_TAYLOR_TERMS > 2
    - z*z   * 0.0965098848673892950 // Expansion term 2: (M - 1.5)^2 * 2/9  / ln(10)
#if PRINTF_LOG10_TAYLOR_TERMS > 3
    + z*z*z * 0.0428932821632841311 // Expansion term 2: (M - 1.5)^3 * 8/81 / ln(10)
#endif
#endif
    // exact log_2 of the exponent x, with logarithm base change
    + exp2 * 0.30102999566398119521 // = exp2 * log_10(2) = exp2 * ln(2)/ln(10)
  );
}


static double pow10_of_int(int floored_exp10)
{
  // A crude hack for avoiding undesired behavior with barely-normal or slightly-subnormal values.
  if (floored_exp10 == DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10) {
    return DOUBLE_MAX_SUBNORMAL_POWER_OF_10;
  }
  // Compute 10^(floored_exp10) but (try to) make sure that doesn't overflow
  double_with_bit_access dwba;
  int exp2 = bastardized_floor(floored_exp10 * 3.321928094887362 + 0.5);
  const double z  = floored_exp10 * 2.302585092994046 - exp2 * 0.6931471805599453;
  const double z2 = z * z;
  dwba.U = ((double_uint_t)(exp2) + DOUBLE_BASE_EXPONENT) << DOUBLE_STORED_MANTISSA_BITS;
  // compute exp(z) using continued fractions,
  // see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
  dwba.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
  return dwba.F;
}

static void print_exponential_number(output_gadget_t* output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char* buf, printf_size_t len)
{
  const bool negative = get_sign_bit(number);
  // This number will decrease gradually (by factors of 10) as we "extract" the exponent out of it
  double abs_number =  negative ? -number : number;

  int floored_exp10;
  bool abs_exp10_covered_by_powers_table;
  struct scaling_factor normalization;


  // Determine the decimal exponent
  if (abs_number == 0.0) {
    // TODO: This is a special-case for 0.0 (and -0.0); but proper handling is required for denormals more generally.
    floored_exp10 = 0; // ... and no need to set a normalization factor or check the powers table
  }
  else  {
    double exp10 = log10_of_positive(abs_number);
    floored_exp10 = bastardized_floor(exp10);
    double p10 = pow10_of_int(floored_exp10);
    // correct for rounding errors
    if (abs_number < p10) {
      floored_exp10--;
      p10 /= 10;
    }
    abs_exp10_covered_by_powers_table = PRINTF_ABS(floored_exp10) < PRINTF_MAX_PRECOMPUTED_POWER_OF_10;
    normalization.raw_factor = abs_exp10_covered_by_powers_table ? powers_of_10[PRINTF_ABS(floored_exp10)] : p10;
  }

  // We now begin accounting for the widths of the two parts of our printed field:
  // the decimal part after decimal exponent extraction, and the base-10 exponent part.
  // For both of these, the value of 0 has a special meaning, but not the same one:
  // a 0 exponent-part width means "don't print the exponent"; a 0 decimal-part width
  // means "use as many characters as necessary".

  bool fall_back_to_decimal_only_mode = false;
  if (flags & FLAGS_ADAPT_EXP) {
    int required_significant_digits = (precision == 0) ? 1 : (int) precision;
    // Should we want to fall-back to "%f" mode, and only print the decimal part?
    fall_back_to_decimal_only_mode = (floored_exp10 >= -4 && floored_exp10 < required_significant_digits);
    // Now, let's adjust the precision
    // This also decided how we adjust the precision value - as in "%g" mode,
    // "precision" is the number of _significant digits_, and this is when we "translate"
    // the precision value to an actual number of decimal digits.
    int precision_ = fall_back_to_decimal_only_mode ?
                     (int) precision - 1 - floored_exp10 :
        (int) precision - 1; // the presence of the exponent ensures only one significant digit comes before the decimal point
    precision = (precision_ > 0 ? (unsigned) precision_ : 0U);
    flags |= FLAGS_PRECISION;   // make sure print_broken_up_decimal respects our choice above
  }

  normalization.multiply = (floored_exp10 < 0 && abs_exp10_covered_by_powers_table);
  bool should_skip_normalization = (fall_back_to_decimal_only_mode || floored_exp10 == 0);
  struct double_components decimal_part_components =
    should_skip_normalization ?
    get_components(negative ? -abs_number : abs_number, precision) :
    get_normalized_components(negative, precision, abs_number, normalization, floored_exp10);

  // Account for roll-over, e.g. rounding from 9.99 to 100.0 - which effects
  // the exponent and may require additional tweaking of the parts
  if (fall_back_to_decimal_only_mode) {
    if ((flags & FLAGS_ADAPT_EXP) && floored_exp10 >= -1 && ((double)decimal_part_components.integral == powers_of_10[floored_exp10 + 1])) {
      floored_exp10++; // Not strictly necessary, since floored_exp10 is no longer really used
      precision--;
      // ... and it should already be the case that decimal_part_components.fractional == 0
    }
    // TODO: What about rollover strictly within the fractional part?
  }
  else {
    if (decimal_part_components.integral >= 10) {
      floored_exp10++;
      decimal_part_components.integral = 1;
      decimal_part_components.fractional = 0;
    }
  }

  // the floored_exp10 format is "E%+03d" and largest possible floored_exp10 value for a 64-bit double
  // is "307" (for 2^1023), so we set aside 4-5 characters overall
  printf_size_t exp10_part_width = fall_back_to_decimal_only_mode ? 0U : (PRINTF_ABS(floored_exp10) < 100) ? 4U : 5U;

  printf_size_t decimal_part_width =
    ((flags & FLAGS_LEFT) && exp10_part_width) ?
      // We're padding on the right, so the width constraint is the exponent part's
      // problem, not the decimal part's, so we'll use as many characters as we need:
      0U :
      // We're padding on the left; so the width constraint is the decimal part's
      // problem. Well, can both the decimal part and the exponent part fit within our overall width?
      ((width > exp10_part_width) ?
        // Yes, so we limit our decimal part's width.
        // (Note this is trivially valid even if we've fallen back to "%f" mode)
        width - exp10_part_width :
        // No; we just give up on any restriction on the decimal part and use as many
        // characters as we need
        0U);

  const printf_size_t printed_exponential_start_pos = output->pos;
  print_broken_up_decimal(decimal_part_components, output, precision, decimal_part_width, flags, buf, len);

  if (! fall_back_to_decimal_only_mode) {
    putchar_via_gadget(output, (flags & FLAGS_UPPERCASE) ? 'E' : 'e');
    print_integer(output,
                  ABS_FOR_PRINTING(floored_exp10),
                  floored_exp10 < 0, 10, 0, exp10_part_width - 1,
                FLAGS_ZEROPAD | FLAGS_PLUS);
    if (flags & FLAGS_LEFT) {
      // We need to right-pad with spaces to meet the width requirement
      while (output->pos - printed_exponential_start_pos < width) {
        putchar_via_gadget(output, ' ');
      }
    }
  }
}
#endif  // PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS

static void print_floating_point(output_gadget_t* output, double value, printf_size_t precision, printf_size_t width, printf_flags_t flags, bool prefer_exponential)
{
  char buf[PRINTF_DECIMAL_BUFFER_SIZE];
  printf_size_t len = 0U;

  // test for special values
  if (value != value) {
    out_rev_(output, "nan", 3, width, flags);
    return;
  }
  if (value < -DBL_MAX) {
    out_rev_(output, "fni-", 4, width, flags);
    return;
  }
  if (value > DBL_MAX) {
    out_rev_(output, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
    return;
  }

  if (!prefer_exponential &&
      ((value > PRINTF_FLOAT_NOTATION_THRESHOLD) || (value < -PRINTF_FLOAT_NOTATION_THRESHOLD))) {
    // The required behavior of standard printf is to print _every_ integral-part digit -- which could mean
    // printing hundreds of characters, overflowing any fixed internal buffer and necessitating a more complicated
    // implementation.
#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
    print_exponential_number(output, value, precision, width, flags, buf, len);
#endif
    return;
  }

  // set default precision, if not set explicitly
  if (!(flags & FLAGS_PRECISION)) {
    precision = PRINTF_DEFAULT_FLOAT_PRECISION;
  }

  // limit precision so that our integer holding the fractional part does not overflow
  while ((len < PRINTF_DECIMAL_BUFFER_SIZE) && (precision > PRINTF_MAX_SUPPORTED_PRECISION)) {
    buf[len++] = '0'; // This respects the precision in terms of result length only
    precision--;
  }

#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
  if (prefer_exponential)
    print_exponential_number(output, value, precision, width, flags, buf, len);
  else
#endif
    print_decimal_number(output, value, precision, width, flags, buf, len);
}

#endif  // (PRINTF_SUPPORT_DECIMAL_SPECIFIERS || PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)

// Advances the format pointer past the flags, and returns the parsed flags
// due to the characters passed
static printf_flags_t parse_flags(const char** format)
{
  printf_flags_t flags = 0U;
  do {
    switch (**format) {
      case '0': flags |= FLAGS_ZEROPAD; (*format)++; break;
      case '-': flags |= FLAGS_LEFT;    (*format)++; break;
      case '+': flags |= FLAGS_PLUS;    (*format)++; break;
      case ' ': flags |= FLAGS_SPACE;   (*format)++; break;
      case '#': flags |= FLAGS_HASH;    (*format)++; break;
      default : return flags;
    }
  } while (true);
}

// internal vsnprintf - used for implementing _all library functions
// Note: We don't like the C standard's parameter names, so using more informative parameter names
// here instead.
static int _vsnprintf(output_gadget_t* output, const char* format, va_list args)
{
  // Note: The library only calls _vsnprintf() with output->pos being 0. However, it is
  // possible to call this function with a non-zero pos value for some "remedial printing".

  while (*format)
  {
    // format specifier?  %[flags][width][.precision][length]
    if (*format != '%') {
      // no
      putchar_via_gadget(output, *format);
      format++;
      continue;
    }
    else {
      // yes, evaluate it
      format++;
    }

    printf_flags_t flags = parse_flags(&format);

    // evaluate width field
    printf_size_t width = 0U;
    if (is_digit_(*format)) {
      width = (printf_size_t) atou_(&format);
    }
    else if (*format == '*') {
      const int w = va_arg(args, int);
      if (w < 0) {
        flags |= FLAGS_LEFT;    // reverse padding
        width = (printf_size_t)-w;
      }
      else {
        width = (printf_size_t)w;
      }
      format++;
    }

    // evaluate precision field
    printf_size_t precision = 0U;
    if (*format == '.') {
      flags |= FLAGS_PRECISION;
      format++;
      if (is_digit_(*format)) {
        precision = (printf_size_t) atou_(&format);
      }
      else if (*format == '*') {
        const int precision_ = va_arg(args, int);
        precision = precision_ > 0 ? (printf_size_t) precision_ : 0U;
        format++;
      }
    }

    // evaluate length field
    switch (*format) {
#ifdef PRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
      case 'I' : {
        format++;
        // Greedily parse for size in bits: 8, 16, 32 or 64
        switch(*format) {
          case '8':               flags |= FLAGS_INT8;
            format++;
            break;
          case '1':
            format++;
            if (*format == '6') { format++; flags |= FLAGS_INT16; }
            break;
          case '3':
            format++;
            if (*format == '2') { format++; flags |= FLAGS_INT32; }
            break;
          case '6':
            format++;
            if (*format == '4') { format++; flags |= FLAGS_INT64; }
            break;
          default: break;
        }
        break;
      }
#endif
      case 'l' :
        flags |= FLAGS_LONG;
        format++;
        if (*format == 'l') {
          flags |= FLAGS_LONG_LONG;
          format++;
        }
        break;
      case 'h' :
        flags |= FLAGS_SHORT;
        format++;
        if (*format == 'h') {
          flags |= FLAGS_CHAR;
          format++;
        }
        break;
      case 't' :
        flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
        format++;
        break;
      case 'j' :
        flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
        format++;
        break;
      case 'z' :
        flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
        format++;
        break;
      default:
        break;
    }

    // evaluate specifier
    switch (*format) {
      case 'd' :
      case 'i' :
      case 'u' :
      case 'x' :
      case 'X' :
      case 'o' :
      case 'b' : {

        if (*format == 'd' || *format == 'i') {
          flags |= FLAGS_SIGNED;
        }

        numeric_base_t base;
        if (*format == 'x' || *format == 'X') {
          base = BASE_HEX;
        }
        else if (*format == 'o') {
          base =  BASE_OCTAL;
        }
        else if (*format == 'b') {
          base =  BASE_BINARY;
        }
        else {
          base = BASE_DECIMAL;
          flags &= ~FLAGS_HASH; // decimal integers have no alternative presentation
        }

        if (*format == 'X') {
          flags |= FLAGS_UPPERCASE;
        }

        format++;
        // ignore '0' flag when precision is given
        if (flags & FLAGS_PRECISION) {
          flags &= ~FLAGS_ZEROPAD;
        }

        if (flags & FLAGS_SIGNED) {
          // A signed specifier: d, i or possibly I + bit size if enabled

          if (flags & FLAGS_LONG_LONG) {
#if PRINTF_SUPPORT_LONG_LONG
            const long long value = va_arg(args, long long);
            print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
#endif
          }
          else if (flags & FLAGS_LONG) {
            const long value = va_arg(args, long);
            print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
          }
          else {
            // We never try to interpret the argument as something potentially-smaller than int,
            // due to integer promotion rules: Even if the user passed a short int, short unsigned
            // etc. - these will come in after promotion, as int's (or unsigned for the case of
            // short unsigned when it has the same size as int)
            const int value =
              (flags & FLAGS_CHAR) ? (signed char) va_arg(args, int) :
              (flags & FLAGS_SHORT) ? (short int) va_arg(args, int) :
              va_arg(args, int);
            print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
          }
        }
        else {
          // An unsigned specifier: u, x, X, o, b
  
          flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
  
          if (flags & FLAGS_LONG_LONG) {
#if PRINTF_SUPPORT_LONG_LONG
            print_integer(output, (printf_unsigned_value_t) va_arg(args, unsigned long long), false, base, precision, width, flags);
#endif
          }
          else if (flags & FLAGS_LONG) {
            print_integer(output, (printf_unsigned_value_t) va_arg(args, unsigned long), false, base, precision, width, flags);
          }
          else {
            const unsigned int value =
              (flags & FLAGS_CHAR) ? (unsigned char)va_arg(args, unsigned int) :
              (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(args, unsigned int) :
              va_arg(args, unsigned int);
            print_integer(output, (printf_unsigned_value_t) value, false, base, precision, width, flags);
          }
        }
        break;
      }
#if PRINTF_SUPPORT_DECIMAL_SPECIFIERS
      case 'f' :
      case 'F' :
        if (*format == 'F') flags |= FLAGS_UPPERCASE;
        print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_DECIMAL);
        format++;
        break;
#endif
#if PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
      case 'e':
      case 'E':
      case 'g':
      case 'G':
        if ((*format == 'g')||(*format == 'G')) flags |= FLAGS_ADAPT_EXP;
        if ((*format == 'E')||(*format == 'G')) flags |= FLAGS_UPPERCASE;
        print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_EXPONENTIAL);
        format++;
        break;
#endif  // PRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
      case 'c' : {
        printf_size_t l = 1U;
        // pre padding
        if (!(flags & FLAGS_LEFT)) {
          while (l++ < width) {
            putchar_via_gadget(output, ' ');
          }
        }
        // char output
        putchar_via_gadget(output, (char) va_arg(args, int) );
        // post padding
        if (flags & FLAGS_LEFT) {
          while (l++ < width) {
            putchar_via_gadget(output, ' ');
          }
        }
        format++;
        break;
      }

      case 's' : {
        const char* p = va_arg(args, char*);
        if (p == NULL) {
          out_rev_(output, ")llun(", 6, width, flags);
        }
        else {
          printf_size_t l = strnlen_s_(p, precision ? precision : PRINTF_MAX_POSSIBLE_BUFFER_SIZE);
          // pre padding
          if (flags & FLAGS_PRECISION) {
            l = (l < precision ? l : precision);
          }
          if (!(flags & FLAGS_LEFT)) {
            while (l++ < width) {
              putchar_via_gadget(output, ' ');
            }
          }
          // string output
          while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision)) {
            putchar_via_gadget(output, *(p++));
            --precision;
          }
          // post padding
          if (flags & FLAGS_LEFT) {
            while (l++ < width) {
              putchar_via_gadget(output, ' ');
            }
          }
        }
        format++;
        break;
      }

      case 'p' : {
        width = sizeof(void*) * 2U + 2; // 2 hex chars per byte + the "0x" prefix
        flags |= FLAGS_ZEROPAD | FLAGS_POINTER;
        uintptr_t value = (uintptr_t)va_arg(args, void*);
        (value == (uintptr_t) NULL) ?
          out_rev_(output, ")lin(", 5, width, flags) :
          print_integer(output, (printf_unsigned_value_t) value, false, BASE_HEX, precision, width, flags);
        format++;
        break;
      }

      case '%' :
        putchar_via_gadget(output, '%');
        format++;
        break;

      // Many people prefer to disable support for %n, as it lets the caller
      // engineer a write to an arbitrary location, of a value the caller
      // effectively controls - which could be a security concern in some cases.
#if PRINTF_SUPPORT_WRITEBACK_SPECIFIER
      case 'n' : {
        if       (flags & FLAGS_CHAR)      *(va_arg(args, char*))      = (char) output->pos;
        else if  (flags & FLAGS_SHORT)     *(va_arg(args, short*))     = (short) output->pos;
        else if  (flags & FLAGS_LONG)      *(va_arg(args, long*))      = (long) output->pos;
#if PRINTF_SUPPORT_LONG_LONG
        else if  (flags & FLAGS_LONG_LONG) *(va_arg(args, long long*)) = (long long int) output->pos;
#endif // PRINTF_SUPPORT_LONG_LONG
        else                               *(va_arg(args, int*))       = (int) output->pos;
        format++;
        break;
      }
#endif // PRINTF_SUPPORT_WRITEBACK_SPECIFIER

      default :
        putchar_via_gadget(output, *format);
        format++;
        break;
    }
  }

  // termination
  append_termination_with_gadget(output);

  // return written chars without terminating \0
  return (int)output->pos;
}


///////////////////////////////////////////////////////////////////////////////

int vprintf_(const char* format, va_list arg)
{
  output_gadget_t gadget = extern_putchar_gadget();
  return _vsnprintf(&gadget, format, arg);
}

int vsnprintf_(char* s, size_t n, const char* format, va_list arg)
{
  output_gadget_t gadget = buffer_gadget(s, n);
  return _vsnprintf(&gadget, format, arg);
}

int vsprintf_(char* s, const char* format, va_list arg)
{
  return vsnprintf_(s, PRINTF_MAX_POSSIBLE_BUFFER_SIZE, format, arg);
}

int vfctprintf(void (*out)(char c, void* extra_arg), void* extra_arg, const char* format, va_list arg)
{
  output_gadget_t gadget = function_gadget(out, extra_arg);
  return _vsnprintf(&gadget, format, arg);
}

int printf_(const char* format, ...)
{
  va_list args;
  va_start(args, format);
  const int ret = vprintf_(format, args);
  va_end(args);
  return ret;
}

int sprintf_(char* s, const char* format, ...)
{
  va_list args;
  va_start(args, format);
  const int ret = vsprintf_(s, format, args);
  va_end(args);
  return ret;
}

int snprintf_(char* s, size_t n, const char* format, ...)
{
  va_list args;
  va_start(args, format);
  const int ret = vsnprintf_(s, n, format, args);
  va_end(args);
  return ret;
}

int fctprintf(void (*out)(char c, void* extra_arg), void* extra_arg, const char* format, ...)
{
  va_list args;
  va_start(args, format);
  const int ret = vfctprintf(out, extra_arg, format, args);
  va_end(args);
  return ret;
}

// Restore the previous diagnostic state
// Define PRINTF_DISABLE_WARNING_PRAGMAS to disable this block
#ifndef PRINTF_DISABLE_WARNING_PRAGMAS
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif // __GNUC__ || __clang__
#endif // PRINTF_DISABLE_WARNING_PRAGMAS

#ifdef __cplusplus
} // extern "C"
#endif
posted @ 2023-01-11 21:40  qsBye  阅读(715)  评论(0编辑  收藏  举报