pyexharts教程

一、前言

pyecharts 是一个用于生成 Echarts 图表的Python库。Echarts是百度开源的一个数据可视化 JS 库,可以生成一些非常酷炫的图表。

本文将会介绍Pyecharts1.x版本的使用方法,本文所有语句均基于v1.8.1,通过以下语句查询使用pyecharts版本:

import pyecharts  

print(pyecharts.__version__)

二、基本使用

1、柱状图

from pyecharts.charts import Bar
from pyecharts import options as opts

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]
# 单独调用
bar = Bar()
bar.add_xaxis(cate)
bar.add_yaxis('电商渠道', data1)
bar.add_yaxis('门店', data2)
bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()

 

 

2、全局配置

可以通过全局配置(.set_global_opts():)控制以下区域

全局配置项使用示例:
1. 标题 & 副标题
2. 不显示图例
bar = Bar()
bar.add_xaxis(cate)
bar.add_yaxis('电商渠道',data1)
bar.add_yaxis('门店',data2)
bar.set_global_opts(title_opts=opts.TitleOpts(title='Bar-基本示例',subtitle='副标题'),
                   toolbox_opts=opts.ToolboxOpts(),
                   legend_opts=opts.LegendOpts(is_show=False))
bar.render("不显示图例.html")

 

 

3、系列配置

可以通过系列配置(.set_series_opts())控制图表中的文本,线样式,标记等.

系列配置项使用示例:
1. 不显示数值
2. 标记每个系列的最大值

from pyecharts.charts import *
from pyecharts.components import Table
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import random
import pyecharts
import datetime
# 使用 snapshot-selenium 渲染图片
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot
bar=(Bar()
     .add_xaxis(cate)
     .add_yaxis('电商渠道',data1)
     .add_yaxis('门店',data2)
     .set_series_opts(label_opts=opts.LabelOpts(is_show=False),
                   markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='max',name="最大值"),]))
     .set_global_opts(title_opts={"text":"Bar-基本示例","subtext":"副标题"}))

#bar.render("标记最大值.html")
# 使用 snapshot-selenium 渲染图片
make_snapshot(snapshot,bar.render(),'bar2.png')

 

 

三、基本图表

1、饼图

 

from pyecharts.charts import *

from pyecharts import options as opts


import pyecharts

# 使用 snapshot-selenium 渲染图片
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot

pie = Pie()
pie.add('',[list(z) for z in zip(cate,data1)],
       radius=["30%","75%"],
       rosetype="radius")
pie.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例",subtitle="我是副标题"))
pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
make_snapshot(snapshot,pie.render(),'pie.png')

 

pie.add('',[list(z) for z in zip(cate,data1)],
    

    # 饼图的半径,数组的第一项是内半径,第二项是外半径

    # 默认设置成百分比,相对于容器高宽中较小的一项的一半

       radius=["30%","75%"],
    # 是否展示成南丁格尔图,通过半径区分数据大小,有'radius'和'area'两种模式。 # radius:扇区圆心角展现数据的百分比,半径展现数据的大小 # area:所有扇区圆心角相同,仅通过半径展现数据大小   rosetype="radius")

2、折线图

from pyecharts.charts import Line
from pyecharts import options as opts
# 使用 snapshot-selenium 渲染图片
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot

# 示例数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data1 = [123, 153, 89, 107, 98, 23]
data2 = [56, 77, 93, 68, 45, 67]

#折线图
"""
折线图示例:
1. is_smooth 折线 OR 平滑
2. markline_opts 标记线 OR 标记点
"""
line = (Line()
       .add_xaxis(cate)
       .add_yaxis("电商渠道",data1,
                 markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
       .add_yaxis("门店",data2,is_smooth=True,
                 markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点",
                                                                        coord=[cate[2], data2[2]], value=data2[2])]))
        .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例",subtitle="我是副标题"))
       )
make_snapshot(snapshot,line.render(),'line.png')
# MarkPointOpts:标记点配置项
        markpoint_opts=opts.MarkPointOpts(
            # 标记点数据
            data=[
                # MarkPointItem:标记点数据项
                opts.MarkPointItem(
                     # 标注名称
                    name="自定义标记点",                     
                    # 特殊的标注类型,用于标注最大值最小值等。可选:
                    # 'min' 最大值、'max' 最大值 、'average' 平均值。
                    # 自己试了一下,如果同时设置type_和coord,只会显示coord的标记点
                    # type_ = 'min',
                    type_ = None,                                        
                    # 在使用 type 时有效,用于指定在哪个维度上指定最大值最小值,可以是 
                    # 0(xAxis, radiusAxis),
                    # 1(yAxis, angleAxis),默认使用第一个数值轴所在的维度。
                    value_index = None,                    
                     # 在使用 type 时有效,用于指定在哪个维度上指定最大值最小值。这可以是维度的直接名称Optional[str],
                    # 例如折线图时可以是 x、angle 等、candlestick 图时可以是 open、close 等维度名称。
                    value_dim = None,                    
                    # 标注的坐标。坐标格式视系列的坐标系而定,可以是直角坐标系上的 x, y,
                    # 也可以是极坐标系上的 radius, angle。例如 [121, 2323]、['aa', 998]。
                    coord=[x[2], y[2]], #这里是直角坐标系x轴第三个,y轴第三个                    
                    # 标注值,可以不设。
                    value=y[2],                    
                    # 相对容器的屏幕 x 坐标,单位像素 Optional[Numeric]  
                    x = None,                      
                    # 相对容器的屏幕 y 坐标,单位像素 Optional[Numeric]  
                    y = None,                      
                    # 标记的图形
                    # ECharts 提供的标记类型包括 'circle', 'rect', 'roundRect', 'triangle', 
                    # 'diamond', 'pin', 'arrow', 'none'
                    # 可以通过 'image://url' 设置为图片,其中 URL 为图片的链接,或者 dataURI。
                    symbol = None,  #一般默认就好                    
                    # 标记的大小,可以设置成诸如 10 这样单一的数字,也可以用数组分开表示宽和高,
                    # 例如 [20, 10] 表示标记宽为 20,高为 10。
                    symbol_size = None,  #一般默认就好                   
                    # 标记点样式配置项,参考 `series_options.ItemStyleOpts`
                    itemstyle_opts = None,
                    )],                        
            # 也可以在这里设置 标记的图形。
            # ECharts 提供的标记类型包括 'circle', 'rect', 'roundRect', 'triangle', 
            # 'diamond', 'pin', 'arrow', 'none'
            # 可以通过 'image://url' 设置为图片,其中 URL 为图片的链接,或者 dataURI。
            symbol = None,  #一般默认就好            
            # 以及设置标记的大小,
            symbol_size = None,  #一般默认就好            
            # 标签配置项,参考 `series_options.LabelOpts`
            label_opts = opts.LabelOpts(position="inside", color="#fff"),)


3、漏斗图
from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot

#漏斗图
#示例数据
cate = ['访问','注册','加入购物车','提交订单','付款成功']
data = [30398,15230,10045,8109,5698]

"""
漏斗图示例:
1. sort_控制排序,默认降序;
2. 标签显示位置
"""
funnel = (Funnel()
         .add('用户数',[list(z) for z in zip(cate,data)],
             sort_='ascending',label_opts=opts.LabelOpts(position='inside'))
         .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-基本示例", subtitle="我是副标题")))
make_snapshot(snapshot,funnel.render(),'funnel.png')#funnel.render_notebook()
add('用户数',[list(z) for z in zip(cate,data)],
sort_='ascending',
#标签显示位置
label_opts=opts.LabelOpts(position='inside'))

4、热力图

 

 

from pyecharts.charts import HeatMap
from pyecharts import options as opts
from pyecharts.faker import Faker
import random

# 示例数据
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]

heat = (HeatMap()
        .add_xaxis(Faker.clock)
        .add_yaxis("访客数", 
                   Faker.week, 
                   data,
                   label_opts=opts.LabelOpts(is_show=True, position="inside"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="HeatMap-基本示例", subtitle="我是副标题"),
            visualmap_opts=opts.VisualMapOpts(),
            legend_opts=opts.LegendOpts(is_show=False))
       )

heat.render_notebook()

 

 

 

 

 

 

 

 

 

 

 

 

 

 
posted @ 2020-08-29 16:00  X18301096  阅读(296)  评论(0编辑  收藏  举报