图像分类数据组织方式
一.npy输入数据格式
数据文件夹组织形式
——————————flower
————————rose
——————图片
————————菊花
——————图片
图像数据编码
data_encoder.py
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该 # 类别的所有图片。 INPUT_DATA = r'E:\X18301096\flower_photos' # 输出文件地址。我们将整理后的图片数据通过numpy的格式保存。 OUTPUT_FILE = r'E:\X18301096\flower_photos/flower_processed_data.npy' # 测试数据和验证数据比例。 VALIDATION_PERCENTAGE = 10 TEST_PERCENTAGE = 10 # 读取数据并将数据分割成训练数据、验证数据和测试数据。 def create_image_lists(sess, testing_percentage, validation_percentage): sub_dirs = [x[0] for x in os.walk(INPUT_DATA)] is_root_dir = True # 初始化各个数据集。 training_images = [] training_labels = [] testing_images = [] testing_labels = [] validation_images = [] validation_labels = [] current_label = 0 # 读取所有的子目录。 for sub_dir in sub_dirs: if is_root_dir: is_root_dir = False continue # 获取一个子目录中所有的图片文件。 extensions = ['jpg', 'jpeg', 'JPG', 'JPEG'] file_list = [] dir_name = os.path.basename(sub_dir) for extension in extensions: file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension) file_list.extend(glob.glob(file_glob)) if not file_list: continue print("processing:", dir_name) i = 0 # 处理图片数据。 for file_name in file_list: i += 1 # 读取并解析图片,将图片转化为299*299以方便inception-v3模型来处理。 image_raw_data = gfile.FastGFile(file_name, 'rb').read() image = tf.image.decode_jpeg(image_raw_data) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.image.resize_images(image, [299, 299]) image_value = sess.run(image) # 随机划分数据聚。 chance = np.random.randint(100) if chance < validation_percentage: validation_images.append(image_value) validation_labels.append(current_label) elif chance < (testing_percentage + validation_percentage): testing_images.append(image_value) testing_labels.append(current_label) else: training_images.append(image_value) training_labels.append(current_label) if i % 200 == 0: print(i, "images processed.") current_label += 1 # 将训练数据随机打乱以获得更好的训练效果。 state = np.random.get_state() np.random.shuffle(training_images) np.random.set_state(state) np.random.shuffle(training_labels) return np.asarray([training_images, training_labels, validation_images, validation_labels, testing_images, testing_labels]) #数据处理主函数 def main(): with tf.Session() as sess: processed_data = create_image_lists(sess, TEST_PERCENTAGE, VALIDATION_PERCENTAGE) # 通过numpy格式保存处理后的数据。 np.save(OUTPUT_FILE, processed_data) if __name__ == '__main__': main()
图像数据解码
data_load.py
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile INPUT_DATA = '' def main(): processed_data = np.load(INPUT_DATA) training_images = processed_data[0] training_labels = processed_data[1] validation_images = processed_data[2] validation_labels = processed_data[3] testing_images = processed_data[4] testing_labels = processed_data[5] print(len(training_images),len(validation_images),len(testing_images)) print(len(training_images[0]),len(training_images[0][0])) print(training_labels) print(validation_labels) print(testing_labels) if __name__ =="__main__": main()
二.TFRecord输入数据格式
将数据写成TFRecord格式
TFRecord_write.py
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np #生成整数型的属性 def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) #生成字符串型的属性 def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # 将数据转化为tf.train.Example格式。 def make_example(image,label,pixels): # 将图像转化成一个字符串 image_raw = image.tostring() # 将一个样例转化为Example protocol Buffer,并将所有信息写入这个数据结构 example = tf.train.Example(features=tf.train.Feature(feature={ 'pixels': _int64_feature(pixels), 'label': _int64_feature(np.argmax(labels[index])), 'image_raw': _bytes_feature(image_raw) })) return example #读取mnist训练数据 mnist = input_data.read_data_sets( r"E:\MNIST_data\MNIST_data",dtype=tf.uint8,one_hot=True ) images = mnist.train.images #训练数据所对应的正确答案,可以作为一个属性保存在TFRECORD中 labels = mnist.train.labels #训练数据的图像分辨率,这可以作为Example中的一个属性 pixels = images.shape[1] num_examples = mnist.train.num_examples #输出TFRecord文件的地址 filename = r"E:\X18301096\data_processing\TFRecord\output.tfrecords" #创建一个writer 来写TFRecord文件 with tf.python_io.TFRecordWriter(filename) as writer: for index in range(num_examples): example = make_example(images[index],labels[index],pixels) #将一个Example写入TFRecord文件 writer.write(example.SerializeToString()) print("TFRecord训练数据已保存。") #读取mnist测试数据 images_test = mnist.test.images labels_test = mnist.test.labels pixels_test = images_test.shape[1] num_examples_test = mnist.test.num_examples #输出包含测试数据的TFRecord文件 with tf.python_io.TFRecordWriter("output_test.tfrecords") as writer: for index in range(num_examples_test): example = make_example(images_test[index],labels[index],pixels_test) writer.write(example.SerializeToString()) print("TFRecord测试数据已保存!")
读取TFRecord数据格式
import tensorflow as tf #读取文件。 reader= tf.TFRecordReader()
#创建一个队列来维护输入文件列表 filename_queue = tf.train.string_input_producer(["output.tfrecords"])
#从文件中读出一个样例 _,serialized_example = reader.read(filename_queue) #解析读取的样例 features = tf.parse_single_example( serialized_example, features={ 'image_raw':tf.FixedLenFeature([],tf.string), 'pixels':tf.FixedLenFeature([],tf.int64), 'label':tf.FixedLenFeature([],tf.int64) }) #tf.decode_raw可以将字符串解析成图像对应的像素数组 images = tf.decode_raw(features['image_raw'],tf.uint8) labels = tf.cast(features['label'],tf.int32) pixels = tf.cast(features['pixels'],tf.int32) with tf.Session() as sess: #启动多线程处理输入数据 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess,coord=coord) for i in range(10): image,label,pixel = sess.run([images,labels,pixels])
三.tf.dataset
在数据集框架中,每个数据集代表一个数据来源;数据可能来自一个张量,一个TFRecord文件,一个文本文件。
数据集的基本使用方法
基本步骤:
1.定义数据集的构造方法
2.定义遍历器
one_shot_iterator
initializable_iterator
3.使用get_next()方法从遍历器中读取数据张量,作为计算图其它部分的输入
import tensorflow as tf import tempfile #从数组创建数据集 input_data = [1,2,3,4,5,8] dataset = tf.data.Dataset.from_tensor_slices(input_data) #定义迭代器,用于遍历数据集 iterator = dataset.make_one_shot_iterator() #get_next()返回代表一个输入数据的张量 x = iterator.get_next() y = x * x with tf.Session() as sess: for i in range(len(input_data)): print(y.eval()) #读取文本文件里的数据 #创建文本文件作为本例的输入 with open("./test1.txt","w") as file: file.write("File1,line1.\n") file.write("File1,line2.\n") with open("./test2.txt","w") as file: file.write("File2,line1.\n") file.write("File2,line2.\n") #从文本文件创建数据集。可提供多个文件 input_files= ["./test1.txt","./test2.txt"] dataset = tf.data.TextLineDataset(input_files) #定义迭代器 iterator = dataset.make_one_shot_iterator() #get_next()返回一个字符串类型的张量,代表文件中的一行 x = iterator.get_next() with tf.Session() as sess: for i in range(4): print(x.eval()) # 解析TFRecord文件里的数据 def parser(record): features = tf.parse_single_example( record, features={ 'image_raw':tf.FixedLenFeature([],tf.string), 'pixels':tf.FixedLenFeature([],tf.int64), 'label':tf.FixedLenFeature([],tf.int64) } ) decode_images = tf.decode_raw(features['image_raw'],tf.uint8) retyped_images = tf.cast(decode_images,tf.float32) images = tf.reshape(retyped_images,[784]) labels = tf.cast(features['label'],tf.int32) return images,labels #从TFRecord文件创建数据集。这里可以提供多个文件 input_files = ["../output.tfrecords"] dataset = tf.data.TFRecordDataset(input_files) #map()函数表示对数据集中的每一条数据进行调用解析方法 dataset = dataset.map(parser) #定义遍历数据集的迭代器 iterator = dataset.make_one_shot_iterator() #读取数据,可用于进一步计算 image,label = iterator.get_next() with tf.Session() as sess: for i in range(10): x,y = sess.run([image,label]) print(y) #使用initializable_iterator来动态初始化数据集 # 从TFRecord文件创建数据集,具体文件路径是一个placeholder,稍后再提供具体路径。 input_files = tf.placeholder(tf.string) dataset = tf.data.TFRecordDataset(input_files) dataset = dataset.map(parser) # 定义遍历dataset的initializable_iterator。 iterator = dataset.make_initializable_iterator() image, label = iterator.get_next() with tf.Session() as sess: # 首先初始化iterator,并给出input_files的值。 sess.run(iterator.initializer, feed_dict={input_files: ["../output.tfrecords"]}) # 遍历所有数据一个epoch。当遍历结束时,程序会抛出OutOfRangeError。 while True: try: x, y = sess.run([image, label]) except tf.errors.OutOfRangeError: break
数据集的高层操作
import tensorflow as tf #列举输入文件 # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据。 train_files = tf.train.match_filenames_once("../output.tfrecords") test_files = tf.train.match_filenames_once("../output_test.tfrecords") #定义解析TFRecord文件的parser方法 # 解析一个TFRecord的方法。 def parser(record): features = tf.parse_single_example( record, features={ 'image_raw':tf.FixedLenFeature([],tf.string), 'pixels':tf.FixedLenFeature([],tf.int64), 'label':tf.FixedLenFeature([],tf.int64) }) decoded_images = tf.decode_raw(features['image_raw'],tf.uint8) retyped_images = tf.cast(decoded_images, tf.float32) images = tf.reshape(retyped_images, [784]) labels = tf.cast(features['label'],tf.int32) #pixels = tf.cast(features['pixels'],tf.int32) return images, labels #定义训练数据集 image_size = 299 # 定义神经网络输入层图片的大小。 batch_size = 100 # 定义组合数据batch的大小。 shuffle_buffer = 10000 # 定义随机打乱数据时buffer的大小。 # 定义读取训练数据的数据集。 dataset = tf.data.TFRecordDataset(train_files) dataset = dataset.map(parser) # 对数据进行shuffle和batching操作。这里省略了对图像做随机调整的预处理步骤。随机打乱顺序,将数据组合成batch dataset = dataset.shuffle(shuffle_buffer).batch(batch_size) # 重复NUM_EPOCHS个epoch。 NUM_EPOCHS = 10
#将数据集重复N份 dataset = dataset.repeat(NUM_EPOCHS) # 定义数据集迭代器。 iterator = dataset.make_initializable_iterator() image_batch, label_batch = iterator.get_next() # 定义神经网络结构和优化过程 # 定义神经网络的结构以及优化过程。这里与7.3. 4小节相同。 def inference(input_tensor, weights1, biases1, weights2, biases2): layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) return tf.matmul(layer1, weights2) + biases2 INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 5000 weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(image_batch, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch) cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算 regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) regularaztion = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularaztion # 优化损失函数 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) #定义测试用数据集 # 定义测试用的Dataset。 test_dataset = tf.data.TFRecordDataset(test_files) test_dataset = test_dataset.map(parser) test_dataset = test_dataset.batch(batch_size) # 定义测试数据上的迭代器。 test_iterator = test_dataset.make_initializable_iterator() test_image_batch, test_label_batch = test_iterator.get_next() # 定义测试数据上的预测结果。 test_logit = inference(test_image_batch, weights1, biases1, weights2, biases2) predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32) # 声明会话并运行神经网络的优化过程。 with tf.Session() as sess: # 初始化变量。 sess.run((tf.global_variables_initializer(), tf.local_variables_initializer())) # 初始化训练数据的迭代器。 sess.run(iterator.initializer) # 循环进行训练,直到数据集完成输入、抛出OutOfRangeError错误。 while True: try: sess.run(train_step) except tf.errors.OutOfRangeError: break test_results = [] test_labels = [] # 初始化测试数据的迭代器。 sess.run(test_iterator.initializer) # 获取预测结果。 while True: try: pred, label = sess.run([predictions, test_label_batch]) print(pred.shape) test_results.extend(pred) test_labels.extend(label) except tf.errors.OutOfRangeError: break # 计算准确率 correct = [float(y == y_) for (y, y_) in zip(test_results, test_labels)] accuracy = sum(correct) / len(correct) print("Test accuracy is:", accuracy)
四.多线程输入数据处理框架
import tensorflow as tf #创建文件列表,通过文件列表创建输入文件队列,读取文件为本章第一节创建的文件 files = tf.train.match_filenames_once("./output.tfrecords") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 解析TFRecord文件里的数据 # 读取文件。 reader = tf.TFRecordReader() _,serialized_example = reader.read(filename_queue) # 解析读取的样例。 features = tf.parse_single_example( serialized_example, features={ 'image_raw':tf.FixedLenFeature([],tf.string), 'pixels':tf.FixedLenFeature([],tf.int64), 'label':tf.FixedLenFeature([],tf.int64) }) #从原始图像数据解析出像素矩阵,并根据图像尺寸还原图像 decoded_images = tf.decode_raw(features['image_raw'],tf.uint8) retyped_images = tf.cast(decoded_images, tf.float32) labels = tf.cast(features['label'],tf.int32) #pixels = tf.cast(features['pixels'],tf.int32) images = tf.reshape(retyped_images, [784]) #将文件以100个为一组打包。 min_after_dequeue = 10000 batch_size = 100 capacity = min_after_dequeue + 3 * batch_size image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue) #训练模型 def inference(input_tensor, weights1, biases1, weights2, biases2): layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) return tf.matmul(layer1, weights2) + biases2 # 模型相关的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 5000 weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(image_batch, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch) cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算 regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) regularaztion = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularaztion # 优化损失函数 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 初始化会话,并开始训练过程。 with tf.Session() as sess: # tf.global_variables_initializer().run() sess.run((tf.global_variables_initializer(), tf.local_variables_initializer())) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 循环的训练神经网络。 for i in range(TRAINING_STEPS): if i % 1000 == 0: print("After %d training step(s), loss is %g " % (i, sess.run(loss))) sess.run(train_step) coord.request_stop() coord.join(threads)