scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation.

关于scores:http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation

第一个方法:

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 09 22:12:13 2016

@author: Administrator
"""

from sklearn import datasets
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target

clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[2,1,2])

for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
    print clf
    print label
    scores = cross_validation.cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

 

第二个方法:

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 09 22:06:31 2016

@author: Administrator
"""

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier, VotingClassifier

clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
y = np.array([1, 1, 1, 2, 2, 2])
eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
eclf1 = eclf1.fit(X, y)
print(eclf1.predict(X))


eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],voting='soft')
eclf2 = eclf2.fit(X, y)
print(eclf2.predict(X))

eclf3 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],voting='soft', weights=[2,1,1])
eclf3 = eclf3.fit(X, y)
print(eclf3.predict(X))

 

Parameters:

estimators : list of (string, estimator) tuples

Invoking the fit method on the VotingClassifier will fit clones of those original estimators that will be stored in the class attribute self.estimators_.

voting : str, {‘hard’, ‘soft’} (default=’hard’)

If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts the class label based on the argmax( 自动回归滑动平均模型) of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated(标准的) classifiers.

#投票规则,默认hard,多数的票;soft 模式看不懂,大约是根据每个方法的概率吧

weights : array-like, shape = [n_classifiers], optional (default=`None`)

Sequence of weights (float or int) to weight the occurrences of predicted class labels (hard voting) or class probabilities before averaging (soft voting). Uses uniform weights if None.

#每个方法预先的权值,默认各方法权值相同.

 

posted on 2016-08-09 22:37  qqhfeng16  阅读(2816)  评论(0编辑  收藏  举报