求第k小的数 O(n)复杂度

博客转载地址:https://blog.csdn.net/flyawayl/article/details/53538369

思路:

利用快速排序的思想,把数组递归划分成两部分。设划分为x,数组左边是小于等于x,右边大于x。

关键在于寻找一个最优的划分,经过 Blum 、 Floyd 、 Pratt 、 Rivest 、 Tarjan五位大牛的研究总结,提出了BFPRT 算法(也就是中位数的中位数算法)

解决方案

利用中位数的中位数算法得到的数作为划分可以实现最优划分–在最差情况下能实现O(n)复杂度。接下来考虑可能出现许多重复的数,假设数组中所有的数全部相同,每次划分之后都是当前区间的右端点,即会退化到O(n^2)复杂度

优化方法

一个比较好的办法就是改写partion算法,设每次划分的标准数为x,将所有的与x相等的元素集中到一起,例如数组a[]={4,4,4,2,1,4,5,6},x=4,划分之后应该是{1,2,4,4,4,4,5,6}。很容易能得到等于x的元素的个数cnt,接下来就是决策的处理:
设当前划分的下标为ind.
如果ind+1==k,直接返回a[ind]
如果ind+1<k,递归进入[ind+1,r)的区间继续寻找答案
接下来就是处理重复元素的关键步骤,如果ind+1>k
可分成两种情况:
1、k位于重复元素[ind+1-cnt+1,ind+1]之中,直接返回a[ind],直接结束程序.
2、k位于所有重复元素之前,则应该丢弃重复元素,递归进入[l,ind-cnt+1)的区间继续寻找答案

当然,这题n<=10^6,直接用sort以O(nlgn)也能过。

代码

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e6+5;
int a[maxn];
int n,k;
inline int findmid(int l,int r){  //中位数的中位数 
    if(r-l<=5) return (l+r)/2;
    for(int i=0;i<(r-l)/5;++i){
        sort(a+l+i*5,a+l+i*5+5);
        swap(a[l+i],a[l+i*5+2]);
    }
    return findmid(l,l+(r-l)/5);
}
int partion(int l,int r,int &p){ //改进版partion 
    int h=findmid(l,r);
    swap(a[h],a[r-1]);
    p=0;
    int ind=l-1;
    for(int i=l;i<r-1;++i){
        if(a[i]==a[r-1]) ++p;
        if(a[i]<=a[r-1])
            swap(a[++ind],a[i]);
    }
    ++p;
    swap(a[++ind],a[r-1]);
    int i=l,j=ind-1;
    while(i<j){
        if(a[i]==a[ind]){
            while(a[j]==a[ind]) --j;
            if(i<j){
                swap(a[i],a[j]);
                --j;
            }
        }
        ++i;
    }
    return ind;
}
int solve(int l,int r){
    int p=0;
    int ind=partion(l,r,p);
    if(ind+1==k) return a[ind];
    if(ind+1>k){
        if(ind+1-p+1<=k) return a[ind];
        else return solve(l,ind-p+1);
    } 
    if(ind+1<k) return solve(ind+1,r);
}
int main(){
    scanf("%d%d",&n,&k);
    for(int i=0;i<n;++i) scanf("%d",&a[i]);
    printf("%d\n",solve(0,n));
    return 0;
} 
posted @ 2018-09-12 00:13  qq874455953  阅读(258)  评论(0编辑  收藏  举报