爬虫入门(六)

1.回顾上篇

1.请求传参(item):
    - 应用场景:解析的数据不在同一张页面中
    - Request(callback,meta={})
2.LOG_LEVEL  LOG_FILE
3.下载中间件:
    - 批量拦截请求(代理ip和UA)和响应(处理页面数据)
4.如何在scrapy使用selenium
    1.在spider的init方法中实例化一个浏览器对象
    2.在spider的closed方法中关闭浏览器对象
    3.在下载中间件类的process_response方法中接收spider中的浏览器对象
    4.处理执行相关自动化操作(发起请求,获取页面数据)
    5.实例化一个新的响应对象(from scrapy.http import HtmlResponse),且将页面数据存储到该对象中
    6.返回新的响应对象
    7.在配置文件中开启中间件
5.如何提升scrapy爬取数据的效率:

增加并发:
    默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。

降低日志级别:
    在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’

禁止cookie:
    如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False

禁止重试:
    对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False

减少下载超时:
    如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s
提升scrapy爬取数据的效率

2.使用scrapy自带的分页处理

# 创建spider爬虫文件命令
scrapy genspider -t crawl filename url
 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 from scrapy.linkextractors import LinkExtractor
 4 from scrapy.spiders import CrawlSpider, Rule
 5 
 6 
 7 class ChoutiSpider(CrawlSpider):
 8     # name = 'chouti'
 9     # # allowed_domains = ['www.xxx.com']
10     # start_urls = ['https://dig.chouti.com/r/scoff/hot/1']
11     # # 连接提取器
12     # # allow表示的就是连接提取器提取连接的规则(正则)
13     # link = LinkExtractor(allow=r'/r/scoff/hot/\d+')
14     #
15     # rules = (
16     #     # 规则解析器:将连接提取器提取到的连接所对应的页面数据进行指定形式的解析
17     #     Rule(link, callback='parse_item', follow=True),
18     #     # 让连接提取器继续作用到连接提取器提取到的连接所对应的页面中
19     # )
20     #
21     # def parse_item(self, response):
22     #     print(response)
23 
24     name = 'qiushi'
25     # allowed_domains = ['www.xxx.com']
26     start_urls = ['https://www.qiushibaike.com/pic/']
27     # 连接提取器
28     # allow表示的就是连接提取器提取连接的规则(正则)
29     link = LinkExtractor(allow=r'/pic/page/\d+\?s=\d+')
30     link1 = LinkExtractor(allow=r'/pic/$')
31     rules = (
32         # 规则解析器:将连接提取器提取到的连接所对应的页面数据进行指定形式的解析
33         Rule(link, callback='parse_item', follow=True),
34         # 让连接提取器继续作用到连接提取器提取到的连接所对应的页面中
35         Rule(link1, callback='parse_item', follow=True),
36     )
37 
38     def parse_item(self, response):
39         print(response)
spider

3.分布式爬虫

分布式爬虫实现流程
1.环境安装:pip install scrapy-redis
2.创建工程
3.创建爬虫文件:RedisCrawlSpider  RedisSpider
    - scrapy genspider -t crawl xxx www.xxx.com
4.对爬虫文件中的相关属性进行修改:
    - 导报:from scrapy_redis.spiders import RedisCrawlSpider
    - 将当前爬虫文件的父类设置成RedisCrawlSpider
    - 将起始url列表替换成redis_key = 'xxx'(调度器队列的名称)
5.在配置文件中进行配置:
    - 使用组件中封装好的可以被共享的管道类:
        ITEM_PIPELINES = {
            'scrapy_redis.pipelines.RedisPipeline': 400
            }
    - 配置调度器(使用组件中封装好的可以被共享的调度器)
        # 增加了一个去重容器类的配置, 作用使用Redis的set集合来存储请求的指纹数据, 从而实现请求去重的持久化
        DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
        # 使用scrapy-redis组件自己的调度器
        SCHEDULER = "scrapy_redis.scheduler.Scheduler"
        # 配置调度器是否要持久化, 也就是当爬虫结束了, 要不要清空Redis中请求队列和去重指纹的set。如果是True,
         就表示要持久化存储, 就不清空数据, 否则清空数据
        SCHEDULER_PERSIST = True

     - 指定存储数据的redis:
        REDIS_HOST = 'redis服务的ip地址'
        REDIS_PORT = 6379

     - 配置redis数据库的配置文件
        - 取消保护模式:protected-mode no
        - bind绑定: #bind 127.0.0.1

     - 启动redis

6.执行分布式程序
    scrapy runspider xxx.py(文件的绝对路径)

7.向调度器队列中仍入一个起始url:
    在redis-cli中执行:
    lpush redis_key url(起始url)

settings

 1 ITEM_PIPELINES = {
 2     'scrapy_redis.pipelines.RedisPipeline': 400
 3 }
 4 # 增加了一个去重容器类,作用使用Redis的set集合来存储请求的指纹数据,从而实现请求去重的持久化
 5 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
 6 # 使用scrapy-redis组件自己的调度器
 7 SCHEDULER = "scrapy_redis.scheduler.Scheduler"
 8 # 配置调度器是否要持久化,也就是当爬虫结束了,要不要清空redis中请求队列和去重指纹的set。如果是true,就表示要持久化,就不清空,否则清空数据。
 9 SCHEDULER_PERSIST = True  #数据指纹
10 
11 REDIS_HOST = '127.0.0.1'
12 REDIS_PORT = 6379
View Code

spider

 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 from scrapy.linkextractors import LinkExtractor
 4 from scrapy.spiders import CrawlSpider, Rule
 5 from scrapy_redis.spiders import RedisCrawlSpider
 6 from redisChoutiPro.items import RedischoutiproItem
 7 
 8 
 9 class ChoutiSpider(RedisCrawlSpider):
10     name = 'chouti'
11     # allowed_domains = ['www.xxx.com']
12     # start_urls = ['http://www.xxx.com/']
13     redis_key = 'chouti'  # 调度器队列的名称
14     rules = (
15         Rule(LinkExtractor(allow=r'/all/hot/recent/\d+'), callback='parse_item', follow=True),
16     )
17 
18     def parse_item(self, response):
19         div_list = response.xpath('//div[@class="item"]')
20         for div in div_list:
21             title = div.xpath('./div[4]/div[1]/a/text()').extract_first()
22             autor = div.xpath('./div[4]/div[2]/a[4]/b/text()').extract_first()
23 
24             item = RedischoutiproItem()
25             item['title'] = title
26             item['author'] = autor
27 
28             yield item
View Code

4.增量式的常见两种情况

1.处理url地址的重复

spider

 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 from scrapy.linkextractors import LinkExtractor
 4 from scrapy.spiders import CrawlSpider, Rule
 5 from redis import Redis
 6 from increment1_Pro.items import Increment1ProItem
 7 
 8 
 9 class MovieSpider(CrawlSpider):
10     name = 'movie'
11     # allowed_domains = ['www.123.com']
12     start_urls = ['https://www.4567tv.tv/index.php/vod/show/id/7.html']
13 
14     rules = (
15         Rule(LinkExtractor(allow=r'/index.php/vod/show/id/7/page/\d+\.html'), callback='parse_item', follow=True),
16     )
17 
18     def parse_item(self, response):
19         conn = Redis(host='127.0.0.1', port=6379)
20         detail_url_list = ['https://www.4567tv.tv' + i for i in response.xpath('//li[@class="col-md-6 col-sm-4 col-xs-3"]/div/a/@href').extract()]
21         for url in detail_url_list:
22             # ex == 1:set中没有存储url
23             ex = conn.sadd('moves_url', url)
24             if ex == 1:
25                 yield scrapy.Request(url=url, callback=self.parse_detail)
26             else:
27                 print('网站没有更新数据,暂无新数据可爬!')
28 
29     def parse_detail(self, response):
30         item = Increment1ProItem()
31         item['name'] = response.xpath('/html/body/div[1]/div/div/div/div[2]/h1/text()').extract_first()
32         item['actor'] = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[3]/a/text()').extract_first()
33 
34         yield item
View Code

pipelines

 1 # -*- coding: utf-8 -*-
 2 
 3 # Define your item pipelines here
 4 #
 5 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
 6 # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
 7 
 8 from redis import Redis
 9 
10 class Increment1ProPipeline(object):
11     conn = None
12 
13     def open_spider(self, spider):
14         self.conn = Redis(host='127.0.0.1', port=6379)
15 
16     def process_item(self, item, spider):
17         dic = {
18             'name': item['name'],
19             'actor': item['actor']
20         }
21         print('有新数据被爬取到,正在入库......')
22         self.conn.lpush('movie_data', item)
23         return item
View Code

2.处理爬取数据内容重复

spider

 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 import hashlib
 4 from scrapy.linkextractors import LinkExtractor
 5 from scrapy.spiders import CrawlSpider, Rule
 6 from redis import Redis
 7 from increment2_Pro.items import Increment2ProItem
 8 
 9 
10 class QiubaiSpider(CrawlSpider):
11     name = 'qiubai'
12     # allowed_domains = ['www.123.com']
13     start_urls = ['https://www.qiushibaike.com/text/']
14 
15     rules = (
16         Rule(LinkExtractor(allow=r'/text/page/\d+/'), callback='parse_item', follow=True),
17     )
18 
19     def parse_item(self, response):
20         div_list = response.xpath('//div[@class="article block untagged mb15 typs_hot"]')
21         conn = Redis(host='127.0.0.1', port=6379)
22         for div in div_list:
23             item = Increment2ProItem()
24             item['content'] = div.xpath('./a[1]/div/span//text()').extract()
25             item['content'] = ''.join(item['content'])
26             item['author'] = div.xpath('./div[1]/a[2]/h2/text() | ./div[1]/span[2]/h2/text()').extract_first()
27 
28             source = item['author'] + item['content']
29             # 自己定制一种形式的数据指纹
30             hash_value = hashlib.sha256(source.encode()).hexdigest()
31 
32             ex = conn.sadd('qiubai_hash', hash_value)
33             if ex == 1:
34                 yield item
35             else:
36                 print('没有更新数据!')
View Code

pipelines

 1 # -*- coding: utf-8 -*-
 2 
 3 # Define your item pipelines here
 4 #
 5 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
 6 # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
 7 from redis import Redis
 8 
 9 
10 class Increment2ProPipeline(object):
11     conn = None
12 
13     def open_spider(self, spider):
14         self.conn = Redis(host='127.0.0.1', port=6379, encoding='utf-8')
15 
16     def process_item(self, item, spider):
17         dic = {
18             'author': item['author'],
19             'content': item['content']
20         }
21 
22         self.conn.lpush('aiubaiData', dic)
23         print('爬取到一条数据,正在入库!')
24         return item
View Code

 

posted @ 2019-03-05 20:03  被嫌弃的胖子  阅读(243)  评论(0编辑  收藏  举报