cvthreshold 的运用
什么是阈值?
-
最简单的图像分割的方法。
-
应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。
-
为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。
-
一旦找到了需要分割的物体的像素点,我们可以对这些像素点设定一些特定的值来表示。(例如:可以将该物体的像素点的灰度值设定为:‘0’(黑色),其他的像素点的灰度值为:‘255’(白色);当然像素点的灰度值可以任意,但最好设定的两种颜色对比度较强,方便观察结果)。
阈值化的类型
-
OpenCV中提供了阈值(threshold)函数: threshold 。
-
这个函数有5种阈值化类型,在接下来的章节中将会具体介绍。
-
为了解释阈值分割的过程,我们来看一个简单有关像素灰度的图片,该图如下。该图中的蓝色水平线代表着具体的一个阈值。
阈值类型1:二进制阈值化
-
该阈值化类型如下式所示:
-
解释:在运用该阈值类型的时候,先要选定一个特定的阈值量,比如:125,这样,新的阈值产生规则可以解释为大于125的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于125的像素点的灰度值设定为0。
阈值类型2:反二进制阈值化
-
该阈值类型如下式所示:
-
解释:该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。(在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255)。
阈值类型3:截断阈值化
-
该阈值化类型如下式所示:
-
解释:同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。(例如:阈值选取为125,那小于125的阈值不改变,大于125的灰度值(230)的像素点就设定为该阈值)。
阈值类型4:阈值化为0
-
该阈值类型如下式所示:
-
解释:先选定一个阈值,然后对图像做如下处理:1 像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0。
阈值类型5:反阈值化为0
-
该阈值类型如下式所示:
-
解释:原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。
代码示范:
简单的代码如下。同样也可以在网站中 下载 以下代码。
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
using namespace cv;
/// 全局变量定义及赋值
int threshold_value = 0;
int threshold_type = 3;;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;
Mat src, src_gray, dst;
char* window_name = "Threshold Demo";
char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
char* trackbar_value = "Value";
/// 自定义函数声明
void Threshold_Demo( int, void* );
/**
* @主函数
*/
int main( int argc, char** argv )
{
/// 读取一副图片,不改变图片本身的颜色类型(该读取方式为DOS运行模式)
src = imread( argv[1], 1 );
/// 将图片转换成灰度图片
cvtColor( src, src_gray, CV_RGB2GRAY );
/// 创建一个窗口显示图片
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// 创建滑动条来控制阈值
createTrackbar( trackbar_type,
window_name, &threshold_type,
max_type, Threshold_Demo );
createTrackbar( trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo );
/// 初始化自定义的阈值函数
Threshold_Demo( 0, 0 );
/// 等待用户按键。如果是ESC健则退出等待过程。
while(true)
{
int c;
c = waitKey( 20 );
if( (char)c == 27 )
{ break; }
}
}
/**
* @自定义的阈值函数
*/
void Threshold_Demo( int, void* )
{
/* 0: 二进制阈值
1: 反二进制阈值
2: 截断阈值
3: 0阈值
4: 反0阈值
*/
threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
imshow( window_name, dst );
}
解释:
-
先看一下整个程序的结构:
-
先读取一副图片,如果是图片颜色类型是RGB3色类型,则转换成灰度类型的图像。转换颜色类型可以运用OpenCV中的 cvtColor<> 函数。
src = imread( argv[1], 1 ); /// 颜色类型从RGB 转换成灰度 cvtColor( src, src_gray, CV_RGB2GRAY );
-
然后创建一个窗口来显示该图片可以检验转换结果
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
-
接着该程序创建两个滚动条来等待用户的输入:
- 第一个滚动条作用:选择阈值类型:二进制,反二进制,截断,0,反0。
- 第二个滚动条作用:选择阈值的大小。
createTrackbar( trackbar_type, window_name, &threshold_type, max_type, Threshold_Demo ); createTrackbar( trackbar_value, window_name, &threshold_value, max_value, Threshold_Demo );
-
在这里等到用户拖动滚动条来输入阈值类型以及阈值的大小,或者是用户键入ESC健退出程序。
-
无论何时拖动滚动条,用户自定义的阈值函数都将会被调用。
/** * @自定义的阈值函数 */ void Threshold_Demo( int, void* ) { /* 0: 二进制阈值 1: 反二进制阈值 2: 截断阈值 3: 0阈值 4: 反0阈值 */ threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type ); imshow( window_name, dst ); }
就像你看到的那样,在这样的过程中,函数 threshold<> 会接受到5个参数:
- src_gray: 输入的灰度图像的地址。
- dst: 输出图像的地址。
- threshold_value: 进行阈值操作时阈值的大小。
- max_BINARY_value: 设定的最大灰度值(该参数运用在二进制与反二进制阈值操作中)。
- threshold_type: 阈值的类型。从上面提到的5种中选择出的结果。
-
结果:
-
程序编译过后,从正确的路径中读取一张图片。例如,该输入图片如下所示:
-
首先,阈值类型选择为反二进制阈值类型。我们希望灰度值大于阈值的变暗,即这一部分像素的灰度值设定为0。从下图中可以很清楚的看到这样的变化。(在原图中,狗的嘴和眼睛部分比图像中的其他部分要亮,在结果图中可以看到由于反二进制阈值分割,这两部分变的比其他图像的都要暗。原理具体参见本节中反二进制阈值部分解释)
-
现在,阈值的类型选择为0阈值。在这种情况下,我们希望那些在图像中最黑的像素点彻底的变成黑色,而其他大于阈值的像素保持原来的面貌。其结果如下图所示: