UVA 10200 Prime Time (打表)
Prime Time
Euler is a well-known matematician, and, among many other things, he discovered that the formula n 2 + n + 41 produces a prime for 0 ≤ n < 40. For n = 40, the formula produces 1681, which is 41 ∗ 41. Even though this formula doesn’t always produce a prime, it still produces a lot of primes. It’s known that for n ≤ 10000000, there are 47,5% of primes produced by the formula! So, you’ll write a program that will output how many primes does the formula output for a certain interval.
Input
Each line of input will be given two positive integer a and b such that 0 ≤ a ≤ b ≤ 10000. You must read until the end of the file.
Output
For each pair a, b read, you must output the percentage of prime numbers produced by the formula in this interval (a ≤ n ≤ b) rounded to two decimal digits.
Sample Input
0 39
0 40
39 40
Sample Output
100.00
97.56
50.00
题目大意:
n可根据公式 f(n) = n*n+n+41得到f(n),f(n)可能是素数也可能不是素数,求a到b之间的数可根据公式得到素数的百分比
打表即可
#include<stdio.h> #include<math.h> #include<algorithm> #include<string.h> #include<stdlib.h> using namespace std; const int N = 10010; typedef long long ll; int num[N];//num[i]表0到i这个数之间的数可根据公式得到素数的数有多少个 int judge(int n) { int k = sqrt(n); for(int i = 2 ; i <= k ; i++) { if(n % i == 0) return 0; } return 1; } int main() { int a, b; memset(num, 0, sizeof(num)); num[0] += judge(41); for(int i = 1 ; i < N ; i++) num[i] = num[i - 1] + judge(i * i + i + 41); while(~scanf("%d%d", &a, &b)) { int sum1, sum; sum1 = num[b] - num[a] + judge(a * a + a + 41); sum = b - a + 1; printf("%.2f\n", (1.0 * sum1 / sum) * 100 + 1e-8); } return 0; }