poj 3468 A Simple Problem with Integers
http://poj.org/problem?id=3468
A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 75149 | Accepted: 23149 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
The sums may exceed the range of 32-bit integers.
#include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> #define N 100010 #define Lson root<<1, L, tree[root].Mid() #define Rson root<<1|1, tree[root].Mid() + 1, R using namespace std; struct Tree { int L, R; long long sum, e; bool op; int Mid() { return (L + R) / 2; } int Len() { return (R - L + 1); } } tree[N * 4]; long long al[N]; void Update(int root) { if(tree[root].op && tree[root].L != tree[root].R) { tree[root].op = false; tree[root<<1].op = tree[root<<1|1].op = true; tree[root<<1].e += tree[root].e; tree[root<<1|1].e += tree[root].e; tree[root<<1].sum += tree[root<<1].Len() * tree[root].e; tree[root<<1|1].sum += tree[root<<1|1].Len() * tree[root].e; tree[root].e = 0; } } void Build(int root, int L, int R) { tree[root].L = L, tree[root].R = R; tree[root].op = false; if(L == R) { tree[root].sum = al[L]; return ; } Build(Lson); Build(Rson); tree[root].sum = tree[root<<1].sum + tree[root<<1|1].sum; } void Insert(int root, int L, int R, long long e) { Update(root); tree[root].sum += (R - L + 1) * e; if(tree[root].L == L && tree[root].R == R) { tree[root].op = true; tree[root].e = e; return ; } if(R <= tree[root].Mid()) Insert(root<<1, L, R, e); else if(L > tree[root].Mid()) Insert(root<<1|1, L, R, e); else { Insert(Lson, e); Insert(Rson, e); } } long long Query(int root, int L, int R) { Update(root); if(tree[root].L == L && tree[root].R == R) return tree[root].sum; if(R <= tree[root].Mid()) return Query(root<<1, L, R); else if(L > tree[root].Mid()) return Query(root<<1|1, L, R); else return Query(Lson) + Query(Rson); } int main() { int n, q, a, b, i; long long c; char s[10]; while(scanf("%d%d", &n, &q) != EOF) { for(i = 1 ; i <= n ; i++) scanf("%I64d", &al[i]); Build(1, 1, n); while(q--) { scanf("%s%d%d", s, &a, &b); if(s[0] == 'Q') printf("%I64d\n", Query(1, a, b)); else { scanf("%I64d", &c); Insert(1, a, b, c); } } } return 0; }