Yarn资源调度器

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序

 

Yarn基本架构

 

  YARN主要由ResourceManagerNodeManagerApplicationMasterContainer等组件构成

 

 Yarn工作机制

 

 

工作机制详解

1MR程序提交到客户端所在的节点。

2YarnRunnerResourceManager申请一个Application

3RM该应用程序的资源路径返回给YarnRunner

4)该程序将运行所需资源提交到HDFS

5)程序资源提交完毕后,申请运行mrAppMaster

6RM将用户的请求初始化成一个Task

7)其中一个NodeManager领取Task任务。

8)该NodeManager创建容器Container并产生MRAppmaster

9ContainerHDFS上拷贝资源到本地

10MRAppmasterRM 申请运行MapTask资源。

11RM运行MapTask任务分配给另外两个NodeManager另两个NodeManager分别领取任务创建容器。

12MR向两个接收到任务的NodeManager发送程序启动脚本这两个NodeManager分别启动MapTaskMapTask数据分区排序。

13MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask

14ReduceTaskMapTask获取相应分区的数据。

15)程序运行完毕后,MR会向RM申请注销自己。

 

作业提交全过程

 

 

作业提交全过程详解

1作业提交

1Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。

2步:ClientRM申请一个作业id

3步:RMClient返回该job资源的提交路径和作业id

4Client提交jar包、切片信息和配置文件到指定的资源提交路径。

5步:Client提交完资源后,向RM申请运行MrAppMaster

2作业初始化

6步:RM收到Client的请求后,将job添加到容量调度器中。

7一个空闲的NM领取到该Job

8步:NM创建Container并产生MRAppmaster

9:下载Client提交的资源到本地。

3任务分配

10MrAppMasterRM申请运行多个MapTask任务资源。

11RM运行MapTask任务分配给另外两个NodeManager另两个NodeManager分别领取任务创建容器。

4任务运行

12MR向两个接收到任务的NodeManager发送程序启动脚本这两个NodeManager分别启动MapTaskMapTask数据分区排序。

13MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask

14ReduceTaskMapTask获取相应分区的数据。

15程序运行完毕后,MR会向RM申请注销自己。

5进度和状态更新

YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

6作业完成

除了向应用管理器请求作业进度外, 客户端每5都会通过调用waitForCompletion()来检查作业是否完成时间间隔可以通过mapreduce.client.completion.pollinterval来设置作业完成之后, 应用管理器和Container会清理工作状态作业的信息会被作业历史服务器存储以备之后用户核查

 

 

 

 

 

 

 

 任务推测执行

 

2.推测执行机制

 

发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。

 

3.执行推测任务的前提条件

 

1每个Task只能有一个备份任务

 

2当前Job已完成的Task必须不小于0.055%

 

3开启推测执行参数设置。mapred-site.xml文件中默认是打开的。

<property>

   <name>mapreduce.map.speculative</name>

   <value>true</value>

   <description>If true, then multiple instances of some map tasks may be executed in parallel.</description>

</property>

 

<property>

   <name>mapreduce.reduce.speculative</name>

   <value>true</value>

   <description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>

</property>

4.不能启用推测执行机制情况

   1)任务间存在严重的负载倾斜;

   2)特殊任务,比如任务向数据库中写数据。

 

5算法原理