商品零售购物篮分析
查看数据特征
import numpy as np import pandas as pd inputfile = 'D:\Python\数据处理/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') data.info() data = data['id'] description = [data.count(),data.min(),data.max()] description = pd.DataFrame(description,index=['Count','Min','Max']).T print('描述性统计结果:\n',np.round(description))
分析热销商品
import pandas as pd inputfile = 'D:\Python\数据处理/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') group = data.groupby(['Goods']).count().reset_index() sorted = group.sort_values('id',ascending=False) print('销售排行前10商品的销量:\n',sorted[:10]) import matplotlib.pyplot as plt x = sorted[:10]['Goods'] y = sorted[:10]['id'] plt.figure(figsize=(8,4)) plt.barh(x,y) plt.rcParams['font.sans-serif'] = 'SimHei' plt.xlabel('销量') plt.ylabel('商品类别') plt.title('商品的销量TOP103152') plt.savefig('D:\Python\数据处理/top10.png') plt.show() data_nums = data.shape[0] for idnex,row in sorted[:10].iterrows(): print(row['Goods'],row['id'],row['id']/data_nums)
各类别商品的销量及其占比
import pandas as pd inputfile1 = 'D:\Python\数据处理/GoodsOrder.csv' inputfile2 = 'D:\Python\数据处理/GoodsTypes.csv' data = pd.read_csv(inputfile1,encoding='gbk') types = pd.read_csv(inputfile2,encoding='gbk') group = data.groupby(['Goods']).count().reset_index() sort = group.sort_values('id',ascending=False).reset_index() data_nums = data.shape[0] del sort['index'] sort_links = pd.merge(sort,types) sort_link = sort_links.groupby(['Types']).sum().reset_index() sort_link = sort_link.sort_values('id',ascending=False).reset_index() del sort_link['index'] sort_link['count'] = sort_link.apply(lambda line:line['id']/data_nums,axis=1) sort_link.rename(columns={'count':'percent'},inplace=True) print('各类别商品的销量及其占比3152:\n',sort_link) outfile1 = 'D:\Python\数据处理/percent.csv' sort_link.to_csv(outfile1,index=False,header=True,encoding='gbk') import matplotlib.pyplot as plt data = sort_link['percent'] labels = sort_link['Types'] plt.figure(figsize=(8,6)) plt.pie(data,labels=labels,autopct='%1.2f%%') plt.rcParams['font.sans-serif'] = 'SimHei' plt.title('每类商品销售占比') plt.savefig('D:\Python\数据处理/percent.png') plt.show()
非酒精饮料内部商品的销量及其占比
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料'] child_nums = selected['id'].sum() selected['child_percent'] = selected.apply(lambda line:line['id']/child_nums,axis=1) selected.rename(columns={'id':'count'},inplace=True) print('非酒精饮料内部商品的销量及其占比:\n',selected) outfile2 = 'D:\Python\数据处理/child_percent.csv' sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk') import matplotlib.pyplot as plt data = selected['child_percent'] labels = selected['Goods'] plt.figure(figsize=(8,6)) explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3) plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2) plt.rcParams['font.sans-serif'] = 'SimHei' plt.title("非酒精饮料内部各商品的销售占比3152") plt.axis('equal') plt.savefig('D:\Python\数据处理/child_persent.png') plt.show()
数据转换
import pandas as pd inputfile = 'D:\Python\数据处理/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') data['Goods'] = data['Goods'].apply(lambda x:','+x) data = data.groupby('Goods').sum().reset_index() data data['Goods'] = data['Goods'].apply(lambda x:[x[1:]]) data_list = list(data['Goods']) data_list[:5] data_translation = [] for i in data_list: p=i[0].split(',') data_translation.append(p) print('数据转换结果的前5个元素:\n',data_translation[0:5])
构建关联规则模型
from numpy import * def loadDataSet(): return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']] def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() # 映射为frozenset唯一性的,可使用其构造字典 return list(map(frozenset, C1)) # 从候选K项集到频繁K项集(支持度计算) def scanD(D, Ck, minSupport): ssCnt = {} for tid in D: # 遍历数据集 for can in Ck: # 遍历候选项 if can.issubset(tid): # 判断候选项中是否含数据集的各项 if not can in ssCnt: ssCnt[can] = 1 # 不含设为1 else: ssCnt[can] += 1 # 有则计数加1 numItems = float(len(D)) # 数据集大小 retList = [] # L1初始化 supportData = {} # 记录候选项中各个数据的支持度 for key in ssCnt: support = ssCnt[key] / numItems # 计算支持度 if support >= minSupport: retList.insert(0, key) # 满足条件加入L1中 supportData[key] = support return retList, supportData def calSupport(D, Ck, min_support): dict_sup = {} for i in D: for j in Ck: if j.issubset(i): if not j in dict_sup: dict_sup[j] = 1 else: dict_sup[j] += 1 sumCount = float(len(D)) supportData = {} relist = [] for i in dict_sup: temp_sup = dict_sup[i] / sumCount if temp_sup >= min_support: relist.append(i) # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据) supportData[i] = temp_sup return relist, supportData # 改进剪枝算法 def aprioriGen(Lk, k): retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i + 1, lenLk): # 两两组合遍历 L1 = list(Lk[i])[:k - 2] L2 = list(Lk[j])[:k - 2] L1.sort() L2.sort() if L1 == L2: # 前k-1项相等,则可相乘,这样可防止重复项出现 # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集) a = Lk[i] | Lk[j] # a为frozenset()集合 a1 = list(a) b = [] # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中 for q in range(len(a1)): t = [a1[q]] tt = frozenset(set(a1) - set(t)) b.append(tt) t = 0 for w in b: # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。 if w in Lk: t += 1 if t == len(b): retList.append(b[0] | b[1]) return retList def apriori(dataSet, minSupport=0.2): # 前3条语句是对计算查找单个元素中的频繁项集 C1 = createC1(dataSet) D = list(map(set, dataSet)) # 使用list()转换为列表 L1, supportData = calSupport(D, C1, minSupport) L = [L1] # 加列表框,使得1项集为一个单独元素 k = 2 while (len(L[k - 2]) > 0): # 是否还有候选集 Ck = aprioriGen(L[k - 2], k) Lk, supK = scanD(D, Ck, minSupport) # scan DB to get Lk supportData.update(supK) # 把supk的键值对添加到supportData里 L.append(Lk) # L最后一个值为空集 k += 1 del L[-1] # 删除最后一个空集 return L, supportData # L为频繁项集,为一个列表,1,2,3项集分别为一个元素 # 生成集合的所有子集 def getSubset(fromList, toList): for i in range(len(fromList)): t = [fromList[i]] tt = frozenset(set(fromList) - set(t)) if not tt in toList: toList.append(tt) tt = list(tt) if len(tt) > 1: getSubset(tt, toList) def calcConf(freqSet, H, supportData, ruleList, minConf=0.7): for conseq in H: #遍历H中的所有项集并计算它们的可信度值 conf = supportData[freqSet] / supportData[freqSet - conseq] # 可信度计算,结合支持度数据 # 提升度lift计算lift = p(a & b) / p(a)*p(b) lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq]) if conf >= minConf and lift > 1: print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6), 'lift值为:', round(lift, 6)) ruleList.append((freqSet - conseq, conseq, conf)) # 生成规则 def gen_rule(L, supportData, minConf = 0.7): bigRuleList = [] for i in range(1, len(L)): # 从二项集开始计算 for freqSet in L[i]: # freqSet为所有的k项集 # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型, H1 = list(freqSet) all_subset = [] getSubset(H1, all_subset) # 生成所有的子集 calcConf(freqSet, all_subset, supportData, bigRuleList, minConf) return bigRuleList if __name__ == '__main__': dataSet = data_translation L, supportData = apriori(dataSet, minSupport = 0.02) rule = gen_rule(L, supportData, minConf = 0.35)
西点类商品的销量及其占比
selected = sort_links.loc[sort_links['Types'] == '西点'] child_nums = selected['id'].sum() selected['child_percent'] = selected.apply(lambda line:line['id']/child_nums,axis=1) selected.rename(columns={'id':'count'},inplace=True) print('西点类商品的销量及其占比:\n',selected) outfile3 = 'D:\Python\数据处理\child_percent.csv' sort_link.to_csv(outfile3,index=False,header=True,encoding='gbk') import matplotlib.pyplot as plt data = selected['child_percent'] labels = selected['Goods'] plt.figure(figsize=(8,6)) explode = (0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03) plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2) plt.rcParams['font.sans-serif'] = 'SimHei' plt.title("西点类各商品的销售占比3152") plt.axis('equal') plt.savefig('D:\Python\数据处理/child_persent_西点.png') plt.show()
构建关联规则模型
from numpy import * def loadDataSet(): return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']] def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() # 映射为frozenset唯一性的,可使用其构造字典 return list(map(frozenset, C1)) # 从候选K项集到频繁K项集(支持度计算) def scanD(D, Ck, minSupport): ssCnt = {} for tid in D: # 遍历数据集 for can in Ck: # 遍历候选项 if can.issubset(tid): # 判断候选项中是否含数据集的各项 if not can in ssCnt: ssCnt[can] = 1 # 不含设为1 else: ssCnt[can] += 1 # 有则计数加1 numItems = float(len(D)) # 数据集大小 retList = [] # L1初始化 supportData = {} # 记录候选项中各个数据的支持度 for key in ssCnt: support = ssCnt[key] / numItems # 计算支持度 if support >= minSupport: retList.insert(0, key) # 满足条件加入L1中 supportData[key] = support return retList, supportData def calSupport(D, Ck, min_support): dict_sup = {} for i in D: for j in Ck: if j.issubset(i): if not j in dict_sup: dict_sup[j] = 1 else: dict_sup[j] += 1 sumCount = float(len(D)) supportData = {} relist = [] for i in dict_sup: temp_sup = dict_sup[i] / sumCount if temp_sup >= min_support: relist.append(i) # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据) supportData[i] = temp_sup return relist, supportData # 改进剪枝算法 def aprioriGen(Lk, k): retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i + 1, lenLk): # 两两组合遍历 L1 = list(Lk[i])[:k - 2] L2 = list(Lk[j])[:k - 2] L1.sort() L2.sort() if L1 == L2: # 前k-1项相等,则可相乘,这样可防止重复项出现 # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集) a = Lk[i] | Lk[j] # a为frozenset()集合 a1 = list(a) b = [] # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中 for q in range(len(a1)): t = [a1[q]] tt = frozenset(set(a1) - set(t)) b.append(tt) t = 0 for w in b: # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。 if w in Lk: t += 1 if t == len(b): retList.append(b[0] | b[1]) return retList def apriori(dataSet, minSupport=0.2): # 前3条语句是对计算查找单个元素中的频繁项集 C1 = createC1(dataSet) D = list(map(set, dataSet)) # 使用list()转换为列表 L1, supportData = calSupport(D, C1, minSupport) L = [L1] # 加列表框,使得1项集为一个单独元素 k = 2 while (len(L[k - 2]) > 0): # 是否还有候选集 Ck = aprioriGen(L[k - 2], k) Lk, supK = scanD(D, Ck, minSupport) # scan DB to get Lk supportData.update(supK) # 把supk的键值对添加到supportData里 L.append(Lk) # L最后一个值为空集 k += 1 del L[-1] # 删除最后一个空集 return L, supportData # L为频繁项集,为一个列表,1,2,3项集分别为一个元素 # 生成集合的所有子集 def getSubset(fromList, toList): for i in range(len(fromList)): t = [fromList[i]] tt = frozenset(set(fromList) - set(t)) if not tt in toList: toList.append(tt) tt = list(tt) if len(tt) > 1: getSubset(tt, toList) def calcConf(freqSet, H, supportData, ruleList, minConf=0.7): for conseq in H: #遍历H中的所有项集并计算它们的可信度值 conf = supportData[freqSet] / supportData[freqSet - conseq] # 可信度计算,结合支持度数据 # 提升度lift计算lift = p(a & b) / p(a)*p(b) lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq]) if conf >= minConf and lift > 1: print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6), 'lift值为:', round(lift, 6)) ruleList.append((freqSet - conseq, conseq, conf)) # 生成规则 def gen_rule(L, supportData, minConf = 0.7): bigRuleList = [] for i in range(1, len(L)): # 从二项集开始计算 for freqSet in L[i]: # freqSet为所有的k项集 # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型, H1 = list(freqSet) all_subset = [] getSubset(H1, all_subset) # 生成所有的子集 calcConf(freqSet, all_subset, supportData, bigRuleList, minConf) return bigRuleList if __name__ == '__main__': dataSet = data_translation L, supportData = apriori(dataSet, minSupport = 0.02) rule = gen_rule(L, supportData, minConf = 0.35)
模型结果表明顾客购买商品的时候会同时购买全脂牛奶。因此,商场应该根据实际情况将全脂牛奶放在顾客购买商品的必经之路,或者商场显眼位置,方便顾客拿取。其他蔬菜、根茎类蔬菜、酸奶油、猪肉、黄油、本地蛋类和多种水果同时购买的概率较高,可以考虑捆绑销售,或者适当调整商场布置,将这些商品的距离尽量拉近,提升购物体验。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构