航空公司客户价值分析
描述性统计分析
import pandas as pd datafile='D:\Python\数据处理/air_data.csv' resultfile='D:\Python\数据处理/explore.csv' data=pd.read_csv(datafile,encoding='utf-8') explore = data.describe(percentiles=[],include='all').T explore['null'] = len(data)-explore['count'] explore = explore[['null','max','min']] explore.columns = [u'空值数',u'最大值',u'最小值'] explore.to_csv(resultfile)
分布分析
from datetime import datetime import matplotlib.pyplot as plt ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year = ffp.map(lambda x:x.year) fig = plt.figure(figsize = (8,5)) plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False plt.hist(ffp_year,bins='auto',color = '#0504aa') plt.xlabel('年份') plt.ylabel('入会年份') plt.title('各年份会员入会人数3152') plt.show() plt.close male = pd.value_counts(data['GENDER'])['男'] female = pd.value_counts(data['GENDER'])['女'] fig = plt.figure(figsize = (7,4)) plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.lf%%') plt.title('会员性别比例3152') plt.show() plt.close lv_four = pd.value_counts(data['FFP_TIER'])[4] lv_five = pd.value_counts(data['FFP_TIER'])[5] lv_six = pd.value_counts(data['FFP_TIER'])[6] fig = plt.figure(figsize=(8,5)) plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue') plt.xticks([index for index in range(3)],['4','5','6']) plt.xlabel('会员等级') plt.ylabel('会员人数') plt.title('会员各级别人数3152') age = data['AGE'].dropna() age = age.astype('int64') fig = plt.figure(figsize = (5,10)) plt.boxplot(age, patch_artist = True, labels = ['会员年龄'], boxprops = {'facecolor':'lightblue'}) plt.title('会员年龄分布箱型图3152') plt.grid(axis='y') plt.show() plt.close
lte = data['LAST_TO_END'] fc = data['FLIGHT_COUNT'] sks = data['SEG_KM_SUM'] #乘机时长 fig = plt.figure(figsize=(5,8)) plt.boxplot(lte, patch_artist=True, labels = ['时长'], boxprops = {'facecolor':'lightblue'}) plt.title('会员最后乘机至结束时长分布箱型图3152') plt.grid(axis='y') plt.show() plt.close fig = plt.figure(figsize=(5,8)) plt.boxplot(fc, patch_artist=True, labels = ['飞行次数'], boxprops={'facecolor':'lightblue'}) plt.title('会员飞行次数分布箱型图3152') plt.grid(axis='y') plt.show() plt.close fig = plt.figure(figsize=(5,10)) plt.boxplot(sks, patch_artist=True, labels=['总飞行公里数'], boxprops = {'facecolor':'lightblue'}) plt.title('客户总飞行公里数箱型图3152') plt.grid(axis='y') plt.show() plt.close
探索客户的积分信息分布情况
ec = data['EXCHANGE_COUNT'] fig = plt.figure(figsize=(8,5)) plt.hist(ec,bins=5,color='#0504aa') plt.xlabel('兑换次数') plt.ylabel('会员人数') plt.title('会员兑换积分次数分布直方图3152') plt.show() plt.close ps = data['Points_Sum'] fig = plt.figure(figsize=(5,8)) plt.boxplot(ps, patch_artist=True, labels=['总累计积分'], boxprops = {'facecolor':'lightblue'}) plt.title('客户总累计积分箱型图3152') plt.grid(axis='y') plt.show() plt.close
相关系数矩阵与热力图
data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] age1 = data['AGE'].fillna(0) data_corr['AGE'] = age1.astype('int64') data_corr['ffp_year'] = ffp_year # 计算相关性矩阵 dt_corr = data_corr.corr(method='pearson') print('相关性矩阵为:\n',dt_corr) # 绘制热力图 import seaborn as sns plt.subplots(figsize=(10,10)) sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues') plt.show() plt.close
清洗空值与异常值
import numpy as np import pandas as pd datafile='D:\Python\数据处理/air_data.csv' cleanedfile='D:\Python\数据处理/data_cleaned.csv' airline_data = pd.read_csv(datafile,encoding = 'utf-8') print('原始数据的形状为:',airline_data.shape) airline_notnull = airline_data.loc[airline_data['SUM_YR_1'].notnull()&airline_data['SUM_YR_2'].notnull(),:] print('删除确实记录后数据的形状为:',airline_notnull.shape) index1 = airline_notnull['SUM_YR_1']!=0 index2 = airline_notnull['SUM_YR_2']!=0 index3 = (airline_notnull['SEG_KM_SUM']>0)&(airline_notnull['avg_discount']!=0) index4 = airline_notnull['AGE']>100 airline = airline_notnull[(index1 | index2)&index3&~index4] print('数据清洗后数据的形状为:',airline.shape) airline.to_csv(cleanedfile)
属性选择
import pandas as pd import numpy as np cleanedfile='D:\Python\数据处理/data_cleaned.csv' airline = pd.read_csv(cleanedfile,encoding='utf-8') airline_selection = airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] print('筛选的属性前5行为:\n',airline_selection.head())
属性构造与数据标准化
L = pd.to_datetime(airline_selection['LOAD_TIME'])-\ pd.to_datetime(airline_selection['FFP_DATE']) L = L.astype('str').str.split().str[0] L = L.astype('int')/30 airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis=1) print('构建的LRFMC属性前5行为:\n',airline_features.head()) from sklearn.preprocessing import StandardScaler data = StandardScaler().fit_transform(airline_features) np.savez('D:\Python\数据处理/airline_scale.npz',data) print('标准化后LRFMC 5个属性为:\n',data[:5,:])
import pandas as pd import numpy as np from sklearn.cluster import KMeans # 导入kmeans算法 # 读取标准化后的数据 airline_scale = np.load('D:\Python\数据处理/airline_scale.npz')['arr_0'] k = 5 # 确定聚类中心数 # 构建模型,随机种子设为123 kmeans_model = KMeans(n_clusters=k,random_state=123) fit_kmeans = kmeans_model.fit(airline_scale) # 模型训练 # 查看聚类结果 kmeans_cc = kmeans_model.cluster_centers_ # 聚类中心 print('各类聚类中心为:\n',kmeans_cc) kmeans_labels = kmeans_model.labels_ # 样本的类别标签 print('各样本的类别标签为:\n',kmeans_labels) r1 = pd.Series(kmeans_model.labels_).value_counts() # 统计不同类别样本的数目 print('最终每个类别的数目为:\n',r1) # 输出聚类分群的结果 cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,\ columns=['ZL','ZR','ZF','ZM','ZC']) # 将聚类中心放在数据框中 cluster_center.index = pd.DataFrame(kmeans_model.labels_ ).\ drop_duplicates().iloc[:,0] # 将样本类别作为数据框索引 print(cluster_center)
%matplotlib inline import matplotlib.pyplot as plt # 客户分群雷达图 labels = ['ZL','ZR','ZF','ZM','ZC'] legen = ['客户群' + str(i + 1) for i in cluster_center.index] # 客户群命名,作为雷达图的图例 lstype = ['-','--',(0, (3, 5, 1, 5, 1, 5)),':','-.'] kinds = list(cluster_center.iloc[:, 0]) # 由于雷达图要保证数据闭合,因此再添加L列,并转换为 np.ndarray cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1) centers = np.array(cluster_center.iloc[:, 0:]) # 分割圆周长,并让其闭合 n = len(labels) angle = np.linspace(0, 2 * np.pi, n, endpoint=False) angle = np.concatenate((angle, [angle[0]])) # 绘图 fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111, polar=True) # 以极坐标的形式绘制图形 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 画线 for i in range(len(kinds)): ax.plot(angle, centers[i], linestyle=lstype[i], linewidth=2, label=kinds[i]) # 添加属性标签 ax.set_thetagrids(angle * 180 / np.pi, labels) plt.title('客户特征分析雷达图3152') plt.legend(legen) plt.show() plt.close
import numpy as np import pandas as pd #from pyecharts.charts import * #from pyecharts import options as opts import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 #读取文件 df = pd.read_csv('D:/Python/数据处理/WA_Fn-UseC_-Telco-Customer-Churn.csv')
# 查看基本信息 df.info() # 查看是否存在重复值--无重复值 df.duplicated().sum()
for i in df.columns: if i == 'SeniorCitizen': print(i,df[i].isnull().sum()) elif i == 'tenure': print(i,df[i].isnull().sum()) elif i == 'MonthlyCharges': print(i,df[i].isnull().sum()) else: print(i,df[df[i] == ' '][i].count())
# 查看分类变量的所有取值 for i in df.columns: if i not in ('customerID','MonthlyCharges','TotalCharges'): print(i,df[i].unique()) # 离散型变量分布 pic = plt.figure(figsize=(9,3),dpi=80) pic.add_subplot(1,2,1)#第一个子图(行数,列数,本子图位置) plt.boxplot(df["MonthlyCharges"]) plt.title('MonthlyCharges3152') pic.add_subplot(1,2,2)#第一个子图(行数,列数,本子图位置) plt.boxplot(df["TotalCharges"]) plt.title('TotalCharges3152') # 子图间距 plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5) plt.show()
流失客户属性分析
pic = plt.figure(figsize=(12,6),dpi=80) pic.subplots_adjust(wspace=0.3,hspace=0.3) for i,j in zip(df.iloc[:,1:5].columns,range(1,5)): df_count = df.pivot_table(index='Churn',columns=i,values='customerID',aggfunc='count') df_ratio = df_count.div(df_count.sum()) #print(df_ratio) pic.add_subplot(2,2,j) plt.title('Churn by '+ i++ '3152') plt.bar([0,1],df_ratio.iloc[0,:],label = df_ratio.index.values[0],width=0.5) plt.bar([0,1],df_ratio.iloc[1,:],bottom = df_ratio.iloc[0,:],label=df_ratio.index.values[1],width=0.5) plt.xticks([0,1],df_count.columns.values) for a,b in zip(range(df_ratio.shape[1]),df_ratio.iloc[1,:]): plt.text(a,0.88,round(b,4),va='bottom',ha='center',fontsize=12) plt.legend() plt.show()
服务属性
pic = plt.figure(figsize=(16,9),dpi=80) pic.subplots_adjust(wspace=0.3,hspace=0.3) for i,j in zip(df.iloc[:,6:15].columns,range(1,10)): df_count = df.pivot_table(index='Churn',columns=i,values='customerID',aggfunc='count') df_ratio = df_count.div(df_count.sum()) pic.add_subplot(3,3,j) plt.title('Churn by '+ i+ '3152') plt.bar(range(df_ratio.shape[1]),df_ratio.iloc[0,:],label = df_ratio.index.values[0],width=0.5) plt.bar(range(df_ratio.shape[1]),df_ratio.iloc[1,:],bottom = df_ratio.iloc[0,:],label=df_ratio.index.values[1],width=0.5) plt.xticks(range(df_ratio.shape[1]),df_count.columns.values) for a,b in zip(range(df_ratio.shape[1]),df_ratio.iloc[1,:]): plt.text(a,0.88,round(b,4),va='bottom',ha='center',fontsize=12) if i=='PhoneService': plt.legend() plt.show()
消费属性
pic = plt.figure(figsize=(20,9),dpi=120) pic.subplots_adjust(wspace=0.3,hspace=0.3) for i,j in zip(df.iloc[:,15:18].columns,range(1,4)): df_count = df.pivot_table(index='Churn',columns=i,values='customerID',aggfunc='count') df_ratio = df_count.div(df_count.sum()) pic.add_subplot(2,2,j) plt.title('Churn by '+ i + '3152') plt.bar(range(df_ratio.shape[1]),df_ratio.iloc[0,:],label = df_ratio.index.values[0],width=0.5) plt.bar(range(df_ratio.shape[1]),df_ratio.iloc[1,:],bottom = df_ratio.iloc[0,:],label=df_ratio.index.values[1],width=0.5) plt.xticks(range(df_ratio.shape[1]),df_count.columns.values) for a,b in zip(range(df_ratio.shape[1]),df_ratio.iloc[1,:]): plt.text(a,0.95,round(b,4),va='bottom',ha='center',fontsize=12) if i=='PaperlessBilling': plt.legend() plt.show()
import seaborn as sns sns.distplot(df.query("Churn == 'Yes'")["MonthlyCharges"]) plt.title("MonthlyCharges3152") plt.show() sns.distplot(df.query("Churn == 'Yes'")["TotalCharges"]) plt.title("TotalCharges3152") plt.show()
老年用户、未婚用户及经济未独立用户流失率较高。月付流失率较高,开通账单流失率较高,使用电子支票的用户流失率较高。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具