BP神经网络
import math from pandas import DataFrame def sigmoid(x): #映射函数 return 1/(1+math.exp(-x)) x1=[0.29,0.50,0.00,0.21,0.10,0.06,0.13,0.24,0.28] x2=[0.23,0.62,0.53,0.53,0.33,0.15,0.03,0.23,0.03] y=[0.14,0.64,0.28,0.33,0.12,0.03,0.02,0.11,0.08] yita=0.1 for i in range(9): Net_in =DataFrame(0.6,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Net_in.loc['input1'] =x1[i] Net_in.loc['input2']=x2[i] real=y[i] Net_in.loc['theata'] = -1 Out_in.loc['theata'] = -1 W_mid=DataFrame(0.7,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out=DataFrame(0.7,index=['input1','input2','input3','input4','theata'],columns=['a']) W_mid_delta=DataFrame(0,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out_delta=DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) for i in range(0,4): Out_in.iloc[i,0] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) #输出层的输出/网络输出 res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0])) error = abs(res-real) W_out_delta.iloc[:,0] = yita*res*(1-res)*(real-res)*Out_in.iloc[:,0] W_out_delta.iloc[4,0] = -(yita*res*(1-res)*(real-res)) W_out = W_out + W_out_delta #输出层权值更新 for i in range(0,4): W_mid_delta.iloc[:,i] = yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(real-res)*Net_in.iloc[:,0] W_mid_delta.iloc[2,i] = -(yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(real-res)) W_mid = W_mid + W_mid_delta #中间层权值更新 testx1=[0.38,0.29] testx2=[0.49,0.47] for i in range(2): Net_in =DataFrame(0.6,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Net_in.loc['input1'] =testx1[i] Net_in.loc['input2']=testx2[i] Net_in.loc['theata'] = -1 Out_in.loc['theata'] = -1 for i in range(0,4): Out_in.iloc[i,0] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) #输出层的输出/网络输出 res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0])) print(res)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)