计算机网络面试题
计算机网络太难?了解这一篇就够了
【原文链接】
1、谈下你对五层网络协议体系结构的理解?★★★★★
学习计算机网络时我们一般采用折中的办法,也就是中和 OSI (七层)和 TCP/IP(四层) 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚。
-
1. 应用层
-
2. 运输层
运输层向高层屏蔽了下面网络核心的细节,他使应用进程看见的就是好像两个运输层之间有一条端对端的逻辑通道。
-
3. 网络层
在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP / IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报,简称数据报。
-
4. 数据链路层
-
5. 物理层
物理层的作用是实现相邻计算机节点之间比特流的透明传送1(表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的),尽可能屏蔽掉具体传输介质和物理设备的差异2,主要任务是确定与传输的接口有关的一些特性。使其上面的数据链路层不必考虑网络的具体传输介质是什么。
(交换机工作在数据链路层,路由器工作在网络层)
2、简单说下每一层对应的网络协议有哪些?
计算机五层网络体系中涉及的协议非常多,下面就常用的做了列举:
【ICMP协议】是一种面向无连接的协议,用于传输出错报告控制信息。它是一个非常重要的协议,它对于网络安全具有极其重要的意义。它属于网络层协议,主要用于在主机与路由器之间传递控制信息,包括报告错误、交换受限控制和状态信息等。当遇到IP数据无法访问目标、IP路由器无法按当前的传输速率转发数据包等情况时,会自动发送ICMP消息。
【BGP】用于在不同的自治系统(AS)之间交换路由信息。
【内部网关协议】1. OSPF 开放式最短路径优先、2.RIP 路由信息协议
https://blog.csdn.net/fayery/article/details/38562779
3、ARP 协议的工作原理?
网络层的 ARP 协议完成了 IP 地址与物理地址的映射。首先,每台主机都会在自己的 ARP 缓冲区中建立一个 ARP 列表,以表示 IP 地址和 MAC 地址的对应关系。当源主机需要将一个数据包要发送到目的主机时,会首先检查自己 ARP 列表中是否存在该 IP 地址对应的 MAC 地址:如果有,就直接将数据包发送到这个 MAC 地址;如果没有,就向本地网段发起一个 ARP 请求的广播包,查询此目的主机对应的 MAC 地址。
此 ARP 请求数据包里包括源主机的 IP 地址、硬件地址、以及目的主机的 IP 地址。网络中所有的主机收到这个 ARP 请求后,会检查数据包中的目的 IP 是否和自己的 IP 地址一致。如果不相同就忽略此数据包;如果相同,该主机首先将发送端的 MAC 地址和 IP 地址添加到自己的 ARP 列表中,如果 ARP 表中已经存在该 IP 的信息,则将其覆盖,然后给源主机发送一个 ARP 响应数据包,告诉对方自己是它需要查找的 MAC 地址;源主机收到这个 ARP 响应数据包后,将得到的目的主机的 IP 地址和 MAC 地址添加到自己的 ARP 列表中,并利用此信息开始数据的传输。如果源主机一直没有收到 ARP 响应数据包,表示 ARP 查询失败。
4、谈下你对 IP 地址分类的理解?IP协议链接
IP 地址是指互联网协议地址,是 IP 协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。IP 地址编址方案将 IP 地址空间划分为 A、B、C、D、E 五类,其中 A、B、C 是基本类,D、E 类作为多播和保留使用,为特殊地址。
每个 IP 地址包括两个标识码(ID),即网络 ID 和主机 ID。同一个物理网络上的所有主机都使用同一个网络 ID,网络上的一个主机(包括网络上工作站,服务器和路由器等)有一个主机 ID 与其对应。A~E 类地址的特点如下:
5、TCP 的主要特点是什么?
6、UDP 的主要特点是什么?
7、TCP 和 UDP 的区别?详情点击
8、TCP 和 UDP 分别对应的常见应用层协议有哪些?
-
1. TCP 对应的应用层协议 FTP,Telnet,SSH,SMTP,POP3,HTTP
-
2. UDP 对应的应用层协议 TFTP,DNS,SNMP
9、详细说下 TCP 三次握手的过程?优化
1. 三次握手
TCP 建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个 TCP 报文段。
10、为什么两次握手不可以呢?
11、为什么不需要四次握手?
有人可能会说 A 发出第三次握手的信息后在没有接收到 B 的请求就已经进入了连接状态,那如果 A 的这个确认包丢失或者滞留了怎么办?
我们需要明白一点,完全可靠的通信协议是不存在的。在经过三次握手之后,客户端和服务端已经可以确认之前的通信状况,都收到了确认信息。所以即便再增加握手次数也不能保证后面的通信完全可靠,所以是没有必要的。
12、Server 端收到 Client 端的 SYN 后,为什么还要传回 SYN?
接收端传回发送端所发送的 SYN 是为了告诉发送端,我接收到的信息确实就是你所发送的信号了。
SYN 是 TCP / IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement[汉译:确认字符,在数据通信传输中,接收站发给发送站的一种传输控制字符。它表示确认发来的数据已经接受无误])消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。
13、传了 SYN,为什么还要传 ACK?
双方通信无误必须是两者互相发送信息都无误。传了 SYN,证明发送方到接收方的通道没有问题,但是接收方到发送方的通道还需要 ACK 信号来进行验证。
14、详细说下 TCP 四次挥手的过程?
据传输结束后,通信的双方都可以释放连接。现在 A 和 B 都处于 ESTABLISHED 状态。
第一次挥手:A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接。A 把连接释放报文段首部的终止控制位 FIN 置 1,其序号 seq = u(等于前面已传送过的数据的最后一个字节的序号加 1),这时 A 进入 FIN-WAIT-1(终止等待1)状态,等待 B 的确认。请注意:TCP 规定,FIN 报文段即使不携带数据,也将消耗掉一个序号。
第二次挥手:B 收到连接释放报文段后立即发出确认,确认号是 ack = u + 1,而这个报文段自己的序号是 v(等于 B 前面已经传送过的数据的最后一个字节的序号加1),然后 B 就进入 CLOSE-WAIT(关闭等待)状态。TCP 服务端进程这时应通知高层应用进程,因而从 A 到 B 这个方向的连接就释放了,这时的 TCP 连接处于半关闭(half-close)状态,即 A 已经没有数据要发送了,但 B 若发送数据,A 仍要接收。也就是说,从 B 到 A 这个方向的连接并未关闭,这个状态可能会持续一段时间。A 收到来自 B 的确认后,就进入 FIN-WAIT-2(终止等待2)状态,等待 B 发出的连接释放报文段。
第三次挥手:若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接。这时 B 发出的连接释放报文段必须使 FIN = 1。假定 B 的序号为 w(在半关闭状态,B 可能又发送了一些数据)。B 还必须重复上次已发送过的确认号 ack = u + 1。这时 B 就进入 LAST-ACK(最后确认)状态,等待 A 的确认。
第四次挥手:A 在收到 B 的连接释放报文后,必须对此发出确认。在确认报文段中把 ACK 置 1,确认号 ack = w + 1,而自己的序号 seq = u + 1(前面发送的 FIN 报文段要消耗一个序号)。然后进入 TIME-WAIT(时间等待) 状态。请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,A 才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果 B 一收到 A 的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,B 结束 TCP 连接的时间要早于 A。
15、为什么 TIME-WAIT 状态必须等待 2MSL 的时间呢?
16、为什么第二次跟第三次不能合并, 第二次和第三次之间的等待是什么?
当服务器执行第二次挥手之后, 此时证明客户端不会再向服务端请求任何数据, 但是服务端可能还正在给客户端发送数据(可能是客户端上一次请求的资源还没有发送完毕),所以此时服务端会等待把之前未传输完的数据传输完毕之后再发送关闭请求。
17、保活计时器的作用?
除时间等待计时器外,TCP 还有一个保活计时器(keepalive timer)。设想这样的场景:客户已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用保活计时器了。
服务器每收到一次客户的数据,就重新设置保活计时器,时间的设置通常是两个小时。若两个小时都没有收到客户端的数据,服务端就发送一个探测报文段,以后则每隔 75 秒钟发送一次。若连续发送 10个 探测报文段后仍然无客户端的响应,服务端就认为客户端出了故障,接着就关闭这个连接。
18、TCP 协议是如何保证可靠传输的?错误/重复/失序/无回应/超时/堵塞
19、谈谈你对停止等待协议的理解?
20、谈谈你对 ARQ 协议的理解?
-
自动重传请求 ARQ 协议
停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为自动重传请求 ARQ。
-
连续 ARQ 协议
连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。
21、谈谈你对滑动窗口的了解?
https://www.cnblogs.com/alifpga/p/7675850.html
TCP 利用滑动窗口实现流量控制的机制。滑动窗口(Sliding window)是一种流量控制技术。早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,同时发送数据,导致中间节点阻塞掉包,谁也发不了数据,所以就有了滑动窗口机制来解决此问题。
TCP 中采用滑动窗口来进行传输控制,滑动窗口的大小意味着接收方还有多大的缓冲区可以用于接收数据。发送方可以通过滑动窗口的大小来确定应该发送多少字节的数据。//当滑动窗口为 0 时,发送方一般不能再发送数据报,但有两种情况除外,一种情况是可以发送紧急数据,例如,允许用户终止在远端机上的运行进程。另一种情况是发送方可以发送一个 1 字节的数据报来通知接收方重新声明它希望接收的下一字节及发送方的滑动窗口大小。
22、谈下你对流量控制的理解?
https://zhuanlan.zhihu.com/p/76023663
TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
23、谈下你对 TCP 拥塞控制的理解?使用了哪些算法?详情点击
拥塞控制和流量控制不同,前者是一个全局性的过程,而后者指点对点通信量的控制。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。
拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致于过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。
相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
为了进行拥塞控制,TCP 发送方要维持一个拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。
TCP 的拥塞控制采用了四种算法,即:慢开始、拥塞避免、快重传和快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如:主动队列管理 AQM),以减少网络拥塞的发生。
-
慢开始:
慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。
-
拥塞避免:
拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送方的 cwnd 加 1。
-
快重传与快恢复:
在 TCP/IP 中,快速重传和快恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。
没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。
有了 FRR,就不会因为重传时要求的暂停被耽误。当有单独的数据包丢失时,快速重传和快恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。
24、什么是粘包?
在进行 Java NIO 学习时,可能会发现:如果客户端连续不断的向服务端发送数据包时,服务端接收的数据会出现两个数据包粘在一起的情况。
基于上面两点,在使用 TCP 传输数据时,才有粘包或者拆包现象发生的可能。一个数据包中包含了发送端发送的两个数据包的信息,这种现象即为粘包。
接收端收到了两个数据包,但是这两个数据包要么是不完整的,要么就是多出来一块,这种情况即发生了拆包和粘包。拆包和粘包的问题导致接收端在处理的时候会非常困难,因为无法区分一个完整的数据包。
25、TCP 黏包是怎么产生的?
-
发送方产生粘包
-
接收方产生粘包
接收方采用 TCP 协议接收数据时的过程是这样的:数据到接收方,从网络模型的下方传递至传输层,传输层的 TCP 协议处理是将其放置接收缓冲区,然后由应用层来主动获取(C 语言用 recv、read 等函数);这时会出现一个问题,就是我们在程序中调用的读取数据函数不能及时的把缓冲区中的数据拿出来,而下一个数据又到来并有一部分放入的缓冲区末尾,等我们读取数据时就是一个粘包。(放数据的速度 > 应用层拿数据速度)
26、怎么解决拆包和粘包?
分包机制一般有两个通用的解决方法:
27、你对 HTTP 状态码有了解吗?
-
1XX 信息
-
2XX 成功
-
3XX 重定向
-
4XX 客户端错误
-
5XX 服务器错误
28、HTTP 状态码 301 和 302 代表的是什么?有什么区别?
301,302 都是 HTTP 状态的编码,都代表着某个 URL 发生了转移。
-
区别:
29、forward 和 redirect 的区别?
Forward 和 Redirect 代表了两种请求转发方式:直接转发和间接转发。
-
举个通俗的例子:
30、HTTP 方法有哪些?
客户端发送的 请求报文 第一行为请求行,包含了方法字段。
31、说下 GET 和 POST 的区别?★★★★★
GET 和 POST 本质都是 HTTP 请求,只不过对它们的作用做了界定和适配,并且让他们适应各自的场景。
本质区别:GET 只是一次 HTTP请求,POST 先发请求头再发请求体,实际上是两次请求。
32、在浏览器中输入 URL 地址到显示主页的过程?★★★★★
1. DNS 解析:浏览器查询 DNS,获取域名对应的 IP 地址:具体过程包括浏览器搜索自身的 DNS 缓存、搜索操作系统的 DNS 缓存、读取本地的 Host 文件和向本地 DNS 服务器进行查询等。对于向本地 DNS 服务器进行查询,如果要查询的域名包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析(此解析具有权威性)//;如果要查询的域名不由本地 DNS 服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个 IP 地址映射,完成域名解析(此解析不具有权威性)。//如果本地域名服务器并未缓存该网址映射关系,那么将根据其设置发起递归查询或者迭代查询;
2. TCP 连接:浏览器获得域名对应的 IP 地址以后,浏览器向服务器请求建立链接,发起三次握手;
3. 发送 HTTP 请求:TCP 连接建立起来后,浏览器向服务器发送 HTTP 请求;
4. 服务器处理请求并返回 HTTP 报文:服务器接收到这个请求,并根据路径参数映射到特定的请求处理器进行处理,并将处理结果及相应的视图返回给浏览器;
5. 浏览器解析渲染页面:浏览器解析并渲染视图,若遇到对 js 文件、css 文件及图片等静态资源的引用,则重复上述步骤并向服务器请求这些资源;浏览器根据其请求到的资源、数据渲染页面,最终向用户呈现一个完整的页面。
6. 连接结束。
33、DNS 的解析过程?★★★
https://blog.csdn.net/m0_37263637/article/details/85157611
34、谈谈你对域名缓存的了解?
为了提高 DNS 查询效率,并减轻服务器的负荷和减少因特网上的 DNS 查询报文数量,在域名服务器中广泛使用了高速缓存,用来存放最近查询过的域名以及从何处获得域名映射信息的记录。
由于名字到地址的绑定并不经常改变,为保持高速缓存中的内容正确,域名服务器应为每项内容设置计时器并处理超过合理时间的项(例如:每个项目两天)。当域名服务器已从缓存中删去某项信息后又被请求查询该项信息,就必须重新到授权管理该项的域名服务器绑定信息。当权限服务器回答一个查询请求时,在响应中都指明绑定有效存在的时间值。增加此时间值可减少网络开销,而减少此时间值可提高域名解析的正确性。
不仅在本地域名服务器中需要高速缓存,在主机中也需要。许多主机在启动时从本地服务器下载名字和地址的全部数据库,维护存放自己最近使用的域名的高速缓存,并且只在从缓存中找不到名字时才使用域名服务器。维护本地域名服务器数据库的主机应当定期地检查域名服务器以获取新的映射信息,而且主机必须从缓存中删除无效的项。由于域名改动并不频繁,大多数网点不需花精力就能维护数据库的一致性。
35、谈下你对 HTTP 长连接和短连接的理解?分别应用于哪些场景?
在 HTTP/1.0 中默认使用短连接。也就是说,客户端和服务器每进行一次 HTTP 操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个 HTML 或其他类型的 Web 页中包含有其他的 Web 资源(如:JavaScript 文件、图像文件、CSS 文件等),每遇到这样一个 Web 资源,浏览器就会重新建立一个 HTTP 会话。
而从 HTTP/1.1 起,默认使用长连接,用以保持连接特性。使用长连接的 HTTP 协议,会在响应头加入这行代码
Connection:keep-alive复制代码
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输 HTTP 数据的 TCP 连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。
Keep-Alive 不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如:Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。
36、谈下 HTTP 1.0 和 1.1、1.2 的主要变化?★★★★
https://www.cnblogs.com/aspirant/p/10833143.html
-
HTTP1.1 的主要变化:
-
HTTP2.0 的主要变化:
37、HTTPS 的工作过程?★★★★★
https://segmentfault.com/a/1190000018992153
-
3.1 验证证书的合法性;
-
3.2 果验证通过证书,浏览器会生成一串随机数,并用证书中的公钥进行加密;
-
3.3 用约定好的 hash 算法计算握手消息,然后用生成的密钥进行加密,然后一起发送给服务器。
-
4.1 用私钥解析出密码,用密码解析握手消息,验证 hash 值是否和浏览器发来的一致;
-
4.2 使用密钥加密消息;
38、HTTP 和 HTTPS 的区别?★★★★★
39、HTTPS 的优缺点?
-
优点:
-
缺点:
40、什么是数字签名?
41、什么是数字证书?
对称加密中,双方使用公钥进行解密。虽然数字签名可以保证数据不被替换,但是数据是由公钥加密的,如果公钥也被替换,则仍然可以伪造数据,因为用户不知道对方提供的公钥其实是假的。所以为了保证发送方的公钥是真的,CA 证书机构会负责颁发一个证书,里面的公钥保证是真的,用户请求服务器时,服务器将证书发给用户,这个证书是经由系统内置证书的备案的。
42、什么是对称加密和非对称加密?详情点击
对称密钥加密是指加密和解密使用同一个密钥的方式,这种方式存在的最大问题就是密钥发送问题,即如何安全地将密钥发给对方。
非对称加密指使用一对非对称密钥,即:公钥和私钥,公钥可以随意发布,但私钥只有自己知道。发送密文的一方使用对方的公钥进行加密处理,对方接收到加密信息后,使用自己的私钥进行解密。
由于非对称加密的方式不需要发送用来解密的私钥,所以可以保证安全性。但是和对称加密比起来,它非常的慢,所以我们还是要用对称加密来传送消息,但对称加密所使用的密钥我们可以通过非对称加密的方式发送出去。
43、 Ping作用原理
44. Session Cookie
1、数据存放位置不同:
cookie数据存放在客户的浏览器上,dusession数据放在服务器上。zhi
2、安全程度不同:
cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗,考虑到安全应当使用session。
3、性能使用程度不同:
session会在一定时间内保存在服务器上。当访问增多,会比较占用你服务器的性能,考虑到减轻服务器性能方面,应当使用cookie。
4、数据存储大小不同:
单个cookie保存的数据不能超过4K,很多浏览器都限制一个站点最多保存20个cookie,而session则存储与服务端,浏览器对其没有限制。
45. 跨域
https://mp.weixin.qq.com/s/jKcrQFiDH0jDPyk3TGE4lA